Open Library - открытая библиотека учебной информации. Как лучше всего избежать прожёга и непровара

Основными трудностями при сварке этих сталей являются:

– конструктивные особенности сварных соединений;

– необходимость обеспечения свойств сварного соединения, близких или равных свойствам основного металла в течение длительного времени эксплуатации (10–15 лет);

– разупрочнение в зоне термического влияния;

– склонность металла шва и ЗТВ сварного соединения к образованию ХТ.

1. Большинство сварных соединений из жаропрочных сталей характеризуется наличием концентратов напряжений, многослойных швов, остающихся подкладок, больших толщин и т.п. (рис. 31).

Рис. 31. Сварные соединения труб с трубными досками (а),

стыковые соединения труб (б) и соединение патрубка с корпусом (в)

При сварке труб с трубными досками, патрубков и труб в корне шва существует конструктивный концентратор в виде непровара. При многослойной сварке происходит нарастание пластической деформации, ширина зоны которой в 2...3 раза превышает ЗТВ. Средняя остаточная пластическая деформация оценивается величиной 0,5...1,7 %.

Эти и другие факторы обусловливают наличие в сварных соединениях этих сталей остаточных сварочных напряжений и т.п. Снизить влияние данных факторов на работоспособность соединения можно путем тщательного выбора и применения технологических параметров сварки (режим, материалы, порядок наложения швов и т.п.).

2. В условиях длительной эксплуатации при Т = 450...600 °С возможно развитие диффузионных процессов между основным металлом и металлом шва.

В первую очередь, это относится к углероду, обладающему высокой диффузионной подвижностью. Миграция углерода может наблюдаться даже при небольшом различии в легировании их карбидообразующими элементами. Образование в процессе эксплуатации обезуглероженной (ферритной) прослойки приводит к снижению прочности и пластичности сварных соединений и к локальному разрушению. В связи с этим сварочные материалы должны обеспечивать химический состав металла шва, близкий к основному металлу.

В отдельных случаях при необходимости отказаться от подогрева и термической обработки используют сварочные материалы, обеспечивающие получение металла шва на никелевой основе. Диффузионная подвижность элементов в сплавах на никелевой основе при 450...600 °С значительно меньше, чем в сталях перлитного класса.

3. Разупрочнение в ЗТВ обусловлено влиянием термического цикла сварки или термообработки сварного соединения на термически обработанный основной металл (нормализации с последующим отпуском). В ЗТВ, где металл был нагрет в интервале Ас 1 –температура отпуска стали, возникают участки разупрочнения. При этом длительная прочность соединения монет быть снижена на 15...20 % по сравнению с основным металлом. Степень разупрочнения зависит не только от режимов термообработки, но и от параметров процесса сварки. Чем больше величина погонной энергии сварки, тем больше зона разупрочнения.

Разупрочнение металла околошовной зоны могло бы быть устранено объемной термической обработкой, но она ограничивается габаритными размерами печей и другими трудностями. Для уменьшения зоны разупрочнения сварку осуществляют узкими валиками без поперечных колебаний на оптимальных режимах.

4. Холодные трещины – хрупкие разрушения жаропрочных перлитных сталей, возникающие в процессе сварки (или после неё).

Причинами их появления являются образование метастабильных структур (троостита, мартенсита) в участках ЗТВ, нагретых выше Ас 1 , охрупчивание сварных соединений под влиянием водорода, действия "силового" и "масштабного" факторов.

Образование закалочных структур в сварном соединении определяется системой легирования сталей и скоростью охлаждения при сварке. Так, хромомолибденовые стали менее склонны к закалке, чем хромомолибденованадиевые.

Наиболее трудным является предотвращение образования XT в металле шва и околошовной зоне. Для предотвращения образования XT сварку производят с предварительным подогревом и последующей термообработкой.

Действие силового и масштабного факторов связаны с образованием растягивающих сварочных напряжений первого рода, жесткостью сварных конструкций, размерами изделий и толщиной свариваемых деталей.

Основными трудностями при сварке этих сталей являются:

– конструктивные особенности сварных соединений;

– необходимость обеспечения свойств сварного соединения, близких или равных свойствам основного металла в течение длительного времени эксплуатации (10–15 лет);

– разупрочнение в зоне термического влияния;

– склонность металла шва и ЗТВ сварного соединения к образованию ХТ.

1. Большинство сварных соединений из жаропрочных сталей характеризуется наличием концентратов напряжений, многослойных швов, остающихся подкладок, больших толщин и т.п. (рис. 31).

Рис. 31. Сварные соединения труб с трубными досками (а),

стыковые соединения труб (б) и соединение патрубка с корпусом (в)

При сварке труб с трубными досками, патрубков и труб в корне шва существует конструктивный концентратор в виде непровара. При многослойной сварке происходит нарастание пластической деформации, ширина зоны которой в 2...3 раза превышает ЗТВ. Средняя остаточная пластическая деформация оценивается величиной 0,5...1,7 %.

Эти и другие факторы обусловливают наличие в сварных соединениях этих сталей остаточных сварочных напряжений и т.п. Снизить влияние данных факторов на работоспособность соединения можно путем тщательного выбора и применения технологических параметров сварки (режим, материалы, порядок наложения швов и т.п.).

2. В условиях длительной эксплуатации при Т = 450...600 °С возможно развитие диффузионных процессов между основным металлом и металлом шва.

В первую очередь, это относится к углероду, обладающему высокой диффузионной подвижностью. Миграция углерода может наблюдаться даже при небольшом различии в легировании их карбидообразующими элементами. Образование в процессе эксплуатации обезуглероженной (ферритной) прослойки приводит к снижению прочности и пластичности сварных соединений и к локальному разрушению. В связи с этим сварочные материалы должны обеспечивать химический состав металла шва, близкий к основному металлу.

В отдельных случаях при необходимости отказаться от подогрева и термической обработки используют сварочные материалы, обеспечивающие получение металла шва на никелевой основе. Диффузионная подвижность элементов в сплавах на никелевой основе при 450...600 °С значительно меньше, чем в сталях перлитного класса.

3. Разупрочнение в ЗТВ обусловлено влиянием термического цикла сварки или термообработки сварного соединения на термически обработанный основной металл (нормализации с последующим отпуском). В ЗТВ, где металл был нагрет в интервале Ас 1 –температура отпуска стали, возникают участки разупрочнения. При этом длительная прочность соединения монет быть снижена на 15...20 % по сравнению с основным металлом. Степень разупрочнения зависит не только от режимов термообработки, но и от параметров процесса сварки. Чем больше величина погонной энергии сварки, тем больше зона разупрочнения.

Разупрочнение металла околошовной зоны могло бы быть устранено объемной термической обработкой, но она ограничивается габаритными размерами печей и другими трудностями. Для уменьшения зоны разупрочнения сварку осуществляют узкими валиками без поперечных колебаний на оптимальных режимах.

4. Холодные трещины – хрупкие разрушения жаропрочных перлитных сталей, возникающие в процессе сварки (или после неё).

Причинами их появления являются образование метастабильных структур (троостита, мартенсита) в участках ЗТВ, нагретых выше Ас 1 , охрупчивание сварных соединений под влиянием водорода, действия "силового" и "масштабного" факторов.

Образование закалочных структур в сварном соединении определяется системой легирования сталей и скоростью охлаждения при сварке. Так, хромомолибденовые стали менее склонны к закалке, чем хромомолибденованадиевые.

Температура плавления меди 1083°С

Марка

Свариваемость

Технологические особенности сварки

Медь катодная

Электродная проволока Бр.КМц 3-1; МНЖКТ-5-1 -0,2-0,2; Бр.ОЦ 4-3; Бр.ОЦ 4-3; БР.Х 0,7

При толщине более 8-10 мм необходим предварительный подогрев до 200-300°С

М00к, М0к, М1к

Хорошая

Медь раскисленная

Mlp, М2р, МЗр

Медь рафинированная

Хорошая

Бронзы оловянные литейные

Электродная проволока той же марки, что и основной металл

При толщине более 10-15 мм необходим предварительный подогрев до 500-600°С

Защитные газы Ar, Не, N 2

Бр03Ц12С5, Бр05Ц5С5, Бр08Ц4, Бр010Ф1, Бр010Ц2

Удовлетворительная

Бр03Ц7С5Н1, Бр04Ц7С5, Бр010С10

Бронзы безоловянистые литейные

БрА9Мц2Л, БрА10ЖЗМц2, БрА11Ж6Н6, БрА7Мц15Ж3Н2ц2

Удовлетворительная

Бронзы деформируемые

Бр0ф7-0,2, БрХ1, БрКМц3-1, БрБ2

БрАМц9-2, БрАЖН9-5-2, БрАЖ9-4, БрСр1

Удовлетворительная

БрА5, БрА7

Латуни деформируемые

Электродная проволока Бр.ОЦ 4-3; Бр.КМц 3-1; ЛК62-0,5; ЛК80-3; ЛМц59-0,2

При толщине более 12 мм необходим предварительный подогрев до 300-350°С

JI96, ЛА77-2, ЛК80-2

ЛМцС58-2, ЛС3, Л062-1

Удовлетворительная

ЛС59-1, ЛС60-1

Медь и сплавы на ее основе - бронзы, латуни, медно-никелевые сплавы качественно свариваются способом MIG/MAG в инертных газах.

Трудности при сварке

Высокая теплопроводность меди (в 6 раз выше, чем у железа) осложняет сварку соединений с несимметричным теплоотводом;

Большая жидкотекучесть (в 2--2,5 раза выше, чем у стали) затрудняет сварку вертикальных и потолочных швов;

Интенсивное окисление с образованием закиси меди (Cu 2 О), хорошо растворяемой в расплавленном металле, приводит к образованию трещин;

Активная способность меди поглощать газы (кислород и водород) при расплавлении приводит к пористости шва и горячим трешинам

Большой коэффициент линейного расширения меди (в 1,5 раза выше чем у стали) влечет та собой значительные деформации и напряжения

Подготовка к сварке

Разделку меди и ее сплавов на мерные заготовки можно выполнять шлифовальной машинкой, труборезом, на токарном или фрезерном станке, а также плазменно-дуговой резкой.

Кромки под сварку подготавливают механическим способом. Для меди толщиной 6-18 мм рекомендуются V- и X-образные разделки.

Свариваемые детали и присадочную проволоку очищают от окислов и загрязнений до металлического блеска и обезжиривают. Механическую зачистку кромок выполняют наждачной бумагой, металлическими щетками и т.д. Использовать наждачную бумагу и абразивный камень с крупным зерном не рекомендуется.

Главное при сварке меди - защита сварочной ванны от кислорода. Она достигается при помощи раскисления фосфором, алюминием и серебром. Поэтому следует использовать электродную проволоку, легированную этими раскислителями.

Свариваемые кромки и присадочную проволоку можно очищать травлением в растворе, состоящем из:

  • 75 см 3 /л HNO 2 ;
  • 100см 3 /л H 2 SO 4:
  • 1 см 3 /л НСl

с последующей промывкой в воде и щелочи и сушкой горячим воздухом.

Предварительный подогрев конструкций с толщиной стенки 10-15 мм возможен газовым пламенем, рассредоточенной дугой или другими способами.

Сборку стыков под сварку ведут либо в приспособлениях, либо с помощью прихваток. Зазор в стыкуемых заготовках соблюдают одинаковым на всем протяжении. Прихватки должны быть минимального сечения, чтобы в процессе сварки их можно было переплавить. Поверхность прихваток необходимо очистить и осмотреть, чтобы на них не было горячих трещин. При сварке в нижнем положении используют графитовые подкладки или медные пластины, охлаждаемые водой.

Выбор параметров режима сварки

Плавящимся электродом в защитных газах эффективнее всего сваривать медь толщиной не менее 6-8 мм. Сварку ведут на постоянном токе обратной полярности.

Медь хорошо сваривается плавящимся электродом в аргоне, азоте, в смеси аргона с азотом и в гелии. Из-за высокой теплопроводности меди для получения надежного провара в начале сварки и хорошего сплавления кромок детали подогревают до 200-500°С. При сварке в аргоне подогрев необходим при толщине металла более 4,5 мм, а в азоте - более 8 мм

Одним из важнейших параметров режима сварки меди плавящимся электродом является длина дуги. Шов качественно формируется при длине дуги 4-5 мм.

Стыковые соединения сваривают на подкладных элементах. Импульсно-дуговая сварка (ИДС) в аргоне дает возможность выполнять вертикальные и потолочные швы, позволяет сваривать тонкий металл. При сварке в азоте процесс идет с короткими замыканиями (КЗ) с повышенным разбрызгиванием или крупнокапельным переносом (КР)

Техника сварки

Для повышения стойкости металла шва к образованию горячих трещин рекомендуются проволоки Бр.АЖНМц 8,5-4-5-1,5; Бр.МцФЖН 12-8-3-3; ММц40, Механические свойства сварных соединений в этом случае соответствуют свойствам основного металла.

Ориентировочные режимы сварки меди в нижнем положении

Вид соединения

Размеры, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В Скорость сварки, м/ч Диаметр электрода, мм Вылет электрода, мм Расход газа, л/мин

ИДС
КЗ

80-110
80-110

18-20
18-20

0,8-1,2
0,8

10-14
10-12

ИДС
КЗ
КЗ

Ar
N 2
Ar

140-210
140-200
140-200

19-23
20-25
19-23

25-35
25-35
25-30

0,8-1,6
0,8-1,2
0,8-1,2

10-18
10-14
10-14

8-10
8-9
8-10

КЗ
СТР
ИДС

N 2
Ar
Ar

250-320
250-320
250-320

24-27
23-26
23-28

22-28
20-25
20-25

1-1,4
1-1,6
1,2-3

10-16
10-18
12-30

СТР
СТР
КР

Ar
He
N 2

350-550
300-500
300-500

32-37
33-38
34-39

18-20
20-22
20-28

2-3
1,6-3
1,6-3

20-35
18-35
18-35

14-16
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

300-500
270-500
280-500

28-36
32-38
32-39

16-18
18-22
18-22

2-4
1,5-3
1,5-3

20-40
18-35
18-35

14-18
30-40
14-16

СТР
СТР
КР

Ar
He
N 2

350-680
350-650
350-650

32-39
34-42
35-42

16-18
16-20
16-20

2-4
2-4
2-4

14-18
30-50
14-18

Медь сваривают с минимальным числом проходов.

Сварку ведут "углом вперед" справа налево. Для формирования обратной стороны шва стыковых соединений используют графитовые или медные водоохлаждаемые подкладки. Двухсторонние соединения выполняют с формированием шва на весу или по подварочному шву наложенному ручной аргонодуговой сваркой W-электродом.

Бронзы

Бронзы - сплавы меди с алюминием. Их обозначают двумя буквами "Бр" начальными буквами русских названий легирующих элементов и рядом чисел, указывающих содержание этих элементов в %.

Так, марка БрАЖМц 10-3-1,5 означает, что бронза содержит 10% алюминия, 3% железа, 1,5% марганца. В конце некоторых марок литейных бронз ставится буква "Л".

Ориентировочные режимы сварки бронз Бр.АМц 9-2, Бр.АЖМц 9-5-2 и латуни ЛМНЖ 55-3-1 в аргоне в нижнем положении (постоянный ток, обратная полярность, проволока Бр. АМц 9-2)

Вид соединения

Размер, мм

Процесс сварки

Сварочный ток, А

Напряжение на дуге, В

Скорость сварки м/ч

Диаметр электрода, мм

Вылет электрода, мм

Расход газа, л/мин

0 +1

ИДС
КЗ

150-190
160-190

23-26
22-25

20-25
20-25

1-1,5
1-1,5

10-16
10-16

0 +1,5

ИДС
КЗ

140-220
160-220

23-26
22-26

20-22
20-22

1-1,5
1-1,5

10-16
10-16

10-12
10-12

СТР
СТР

300-400
375-450

29-33
31-36

25-32
30-35

20-35
20-35

12-16
14-16

0 +2
0 +2

Трудность сваривания бронз объясняется их повышенной жидкотекучестью. При сварке бронз возникают трудности, вызванные образованием окиси алюминия, поэтому способ и технологию сварки выбирают такими, как и при сварке алюминия, а режимы - характерные для медных сплавов.

Латуни

Сплавы меди с цинком - это латуни , или медноцинковые латуни. Для улучшения свойств в сплав добавляют Al, Mn, Ni, Fe, Sn, Si и др. Такие латуни называются специальными.

Латуни обозначают буквой "Л", справа от которой пишут буквенное обозначение специально вводимых элементов (кроме Zn). затем цифру, указывающую процент меди, и наконец, проценты специально вводимых добавок в той же последовательности, в какой записаны сами элементы. В маркировке элементы обозначаются русскими буквами: Л - алюминий, Б -бериллий, О - олово, С - свинец, Н - никель, Мц - марганец, К - кремний, Мг - магний, X - хром, Ц - цинк.

ЛТ 96 - (томпак) означает медно-цинковую латунь с содержанием 96% меди и 4% цинка.

Л 68 - медноцинковая латунь с содержанием 68% меди и 32% цинка.

ЛАЖМц 70-6-3-1 - это специальная латунь с содержанием 70% меди, 6% алюминия, 3% железа, 1% марганца, 20% цинка.

Особенность сварки латуней - интенсивное испарение цинка при температуре 907°С. При этом ухудшаются механические свойства сварного соединения. Для уменьшения выгорания цинка эффективны сварка на пониженной мощности дуги, применение присадочной проволоки с кремнием, который создает на поверхности сварочной ванны окисную пленку (SiO 2), препятствующую испарению цинка.

Защитный газ необходимо предварительно просушить или добавить к нему 2-5% кислорода. Это обеспечит плотность шва.

Нужно поддерживать самую короткую дугу и добиваться получения шва с низким коэффициентом формы (отношением ширины шва к его толщине). Иначе в металле шва и околошовной зоны появятся горячие (кристаллизационные) трещины.

После сварки металл должен как можно быстрее остыть. Для этого используют медные, охлаждаемые водой, подкладки; промежуточное остывание слоев; охлаждение швов водой. Это повысит коррозионную стойкость сварного соединения

Конструктивные размеры стыковых соединений при сварке высоколегированных сталей

Снимать фаску для получения скоса кромки можно только механическим, способом. Перед сборкой свариваемые кромки защищают от окалины и загрязнений на ширину не менее 20 мм снаружи и изнутри, после чего обезжиривают.

Сборку стыков выполняют либо в инвентарных, приспособлениях, либо с помощью прихваток. При этом необходимо учесть возможную усадку металла шва в процессе сварки. Ставить прихватки в местах пересечения швов нельзя. К качеству прихваток предъявляются те же требования, что и к основному сварному шву. Прихватки с недопустимыми дефектами (горячие трещины, поры и т.д.) следует удалить механическим способом.

Выбор параметров режима. Основные рекомендации те же, что при сварке углеродистых и низколегированных сталей. Главная особенность сварки высоколегированных сталей - минимизация погонной энергии, вводимой в основной металл. Это достигается соблюдением следующих условий:

Рис.100
короткая сварочная дуга;

отсутствие поперечных колебаний горелки;

максимально допустимая скорость сварки без перерывов и повторного нагрева одного и того же участка;

минимально возможные токовые режимы

Техника сварки. Основное правила поддерживать короткую дугу, поскольку при этом расплавленный металл лучше защищен газом от воздуха. При сварке в аргоне W-электродом подавать присадочную проволоку в зону горения дуги следует равномерно, чтобы не допускать брызг расплавленного металла, которые, попадая на основной металл, могут вызвать очаги коррозии. И начале сварки горелкой подогревают кромки и присадочную проволоку. После образования сварочной ванны выполняют сварку, равномерно перемещая горелку по стыку. Необходимо следить за глубиной проплавления, отсутствием непровара. По форме расплавленного металла сварочной ванны определяют качество проплавления: хорошее (ванна вытянута по направлению сварки) или недостаточное (ванна круглая или овальная)

Контрольные вопросы:

1. Зачем в аргон добавляют 2-5% кислорода?

3. Почему сварка высоколегированных сталей выполняется на минимальной погонной энергии?

Контрольное задание:

1. Вам как сварщику необходимо подобрать присадочный материал, силу сварочного тока, подготовку кромок для сварки стали 12Х17

Понятие разнородных сталей довольно однозначно обозначено в специализированной литературе. Таковой считают сталь, которая отличается на атомно-кристаллическом уровне. Она имеет определенную решетку и относится к различным классам по структуре. Это сталь с типовой решеткой, но принадлежащая к отличным группам по виду, степени легирования: высоко- и низколегированные. Высоколегированная сталь состоит из дорогих, зачастую редких элементов. Это вызывает необходимость экономить.

Технология сварки

Одним из центральных решений проблемы экономии высоколегированных материалов является возможность изготовления деталей и механизмов путем комбинирования, то есть сварка разнородных сталей. Это становится возможным благодаря тому, что, как правило, в процессе эксплуатации работает не все изделие, а только отдельные его элементы или части. Большая же часть не подвергается взаимодействию и окружена стандартными условиями. Поэтому она без риска может изготавливаться из средне- и низколегированной стали.

Для создания комбинированных конструкций из разнородных металлов необходимо соединять друг с другом их отдельные составные части. Если изделие будет работать в неблагоприятной среде и/или при высокой температуре, то соединение просто необходимо выполнять с помощью сварки.

В таких случаях приходится варить между собой разнородные стали, которые разительно отличаются по физико-химическим свойствам. Но это различие редко позволяет создать качественное, работающее при особых условиях сварочное соединение. Такой вопрос оказался настолько трудным для поиска решений, что образовал отдельную проблему – сварка разнородных металлов.

Главной проблемой такой сварки является то, что во время получения и эксплуатации сварочного шва в нем зачастую появляются трещинки. Они обнаруживаются, как правило, на грани или посредине сплавления.

Следующей, но немаловажной составляющей, обуславливающей проблемность сварки разнородных металлов, является то, что при сплавлении нередко протекает замена структуры с появлением прослоек. Это существенно усложняет технологию сварки. Ведь с заменой структуры, если она достаточно сильная, снижаются такие характеристики, как долговечность и пластика.

Итоги неутешительны: досрочное, в худших ситуациях экстренно-аварийное разрушение детали/механизма. Видоизменение структуры, когда выполняется сварка самих разнородных сталей, положено называть неоднородностью структуры. Те же соединения, в коих структура составляющих неизменна ниже грани сплавления, получаются довольно технологичными и верно служат в предназначенных для них условиях.

Отличие хороших огнестойких соединений заключается в структурно-однородной зоне сплавления в независимости от того, различны ли соединяемые материалы по структуре.

Проблемы и трудности при сварке

Проблема появления неоднородной структуры присуща не одним соединениям из разнородных сталей. Она существует и в работе с биметаллом, соединениями неаустенитной стали с аустенитными швами, при сплавлении высоколегированной наплавки со средними или низкими по легированию сталями. Поэтому вышеперечисленные варианты также относятся к соединениям из разнородных сталей.

Большое затруднение при таком виде сварки вызвано тем, что в большем количестве случаев металлы оказываются различны по цифре коэффициента линейного расширения. Поэтому соединения такой стали не теряют напряженности даже тогда, когда подвергаются термообработке.

Кроме того, в таких соединениях после обработки или работы при больших температурах, ввиду указанного различия, наблюдается внезапное изменение напряжения, зачастую с изменением знака. Это лишь усугубляет состояние слабого участка, увеличивая напряжение зоны сплавления. В связи с этим сварочные соединения разнородных сталей подвергают термообработке довольно редко.

Указанные проблемы и трудности в большей мере обусловили то, как выполненяется технология сварки неоднородных металлов. А заключается она в предупреждении появления трещин именно в материале швов и полностью исключает замену структурного и химического составляющих металлов в месте сплавления. Это минимизирует появление неоднородности структуры, делает составы с похожими коэффициентами расширения металлов.

Нюансы образования трещин

Трещины при сварных работах возникают с образованием мартенситной структуры.

Дуговая сварка угольным электродом стальной алитированной пластины с алюминиевой: а - схема однопроходной сварки, б - однопроходная сварка при толщине пластин до 6 мм, в - многопроходная сварка при толщине пластин 12 мм, 1 и 11 - первый и второй проходы, III и IV - третий и четвертый проходы (подварка с обратной стороны), I - алитированная поверхность стальной пластины, 2 - формующий брусок, 3 - сварной шов, 4 - присадка, 5 - электрод, 6 - формующая подкладка.

Она значительно снижает пластичность металлов. Швы с этой структурной сеткой бывают при излишнем разведении высоколегированного металла добавлением в него менее легированного. Это случается при значительном проплавлении свариваемого металла.

Швы с непластичной структурной сеткой возникают и при сплавлении металлов, значительно отличных по основным химическим составляющим. В этих случаях часто образование переходных слоев. Если ширина этого слоя увеличивается до установленной цифры, образование трещинок у грани сплава практически неизбежно.

Развитие науки и технологии, опыт, хоть и порой отрицательный, позволили собрать много знаний о порядке образования и природе трещин в металле шва. Поэтому в настоящее время практическое исключение их появлений не вызывает у специалистов больших затруднений.

Намного труднее оказалось решение вопроса с возникновением неоднородной структурной сети в месте сплавления неоднородных сталей. Состав данных структурно-сетевых неоднородностей хорошо изучен. Он состоит из богатой углеродом прослойки со стороны легированной стали и обратной по свойствам, с менее легированной. Образование происходит за счет перемещения углерода.

Неоднородность структуры, ее образование, степень распространения – все это определено условиями, благоприятствующими переходу углерода из менее в более легированный материал. Главными среди перечисленного выделяют:

  • подогревание соединения до температур, усиливающих переход углерода;
  • химический состав сплавов;
  • время содержания соединения при указанных температурах;
  • нахождение в сплавах углеродов других элементов.

После сварочных работ с соединением однослойным швом в зоне сплавления не фиксируется распределение углерода, который характеризует неоднородность. В этих образованиях проблема не возникает и тогда, когда используется обыкновенная углеродистая сталь, не содержащая частиц, составляющих углерод в устойчивые карбиды.

Проблема неоднородности структур в месте сплава разнородных сталей появляется при нагревании состава до 350° С. Но это только начальные стадии.

Пик активного распространения замечен при t от 500° С. Наибольшая возможность распространения неоднородности зафиксирована в температурных границах 600-800°. До достижения порога в 350° возникновение неоднородности не происходит даже при сплавлении сбоку менее легированного металла, стандартной низкоуглеродной стали.

Протяженность выдержки увеличивает неоднородность, но не настолько кардинально, как разница температуры, ее повышение. В то же время постепенное увеличение длительности выдержки снижает скорость образования неоднородности. Это ярко выражено в минусовой температуре, менее 600°. Однако нагрев больше 600° ощутимо развивает неоднородность, даже при минутных выдержках.

С учетом сказанного получается, что температурная обработка сварных соединений неоднородных металлов крайне неблагоприятна из-за риска появления в местах сплавления неоднородности структуры. При отсутствии в металлах карбидообразующих составляющих проявление неоднородности не просматривается даже при сплаве со стандартной углеродистой сталью.

При наличии указанных составляющих неоднородность появляется даже тогда, когда меньше легированного металла, железа. Также ее образование замечено там, где высоколегированный материал вмещает углерода более, чем просто легированный. Это значение должно превышаться в 5-10 раз. Объяснение этому таково: важно не суммарное число углерода, а отличие его термодинамической активности определенной численностью частиц в уже твердом растворе.

Воздействие углеродных составляющих на неоднородность структуры в месте сплавления разнородных металлов зависима от типа и содержания составляющих. При этом более определяющим является именно тип, а не численность.

Насыщенность элемента увеличивается при приближении родства с углеродом и присутствует только при выражении насыщенности карбидообразующего элемента в атомных процентах, но не в процентах по массе. Потому в передвижении углерода играет роль не обобщенное число частиц, а их свободное количество. Изменение такого показателя, как число карбидообразующего составляющего, неравномерно отображается на увеличении неоднородности.

Основные группы соединений

Проанализировав сказанное, все сварные соединения (далее СС) неоднородных сталей было принято расформировать на группы:

  1. t до 350°. В роли меньше легированной стали – низкоуглеродистая сталь, t использования – до указанной границы.
  2. Допустимая t – 350-450°. Фигурируют качественные углеродистые и обычные, низколегированные стали.
  3. Допустимая t – 450-550°. Низко- или среднелегированные хромомолибденовые стали.
  4. t свыше 550°. Низко- или среднелегированные хромомолибденованадиевые стали.

Сварка материалов одного структурного класса

При пользовании сталями перлитных классов применяются сварочные материалы, рекомендованные для меньше легированной стали. В этих случаях схема сварки и максимальная t нагрева назначаются согласно свойствам наиболее легированной стали.

Когда соединения выполняются между высоко хромистыми, ферритными, ферритно-аустенитными, мартенситными сталями, то чтобы предотвратить появление ломких прослоек и непрочного металла шва, материал для сварки обязан быть из ферритно-аустенитного класса. При таком выполнении формируется шов с наиболее мелкой структурной сеткой, чем если бы использовался ферритный сварочный материал. Применяются подогрев и высокий отпуск, порядка 700-750° С.

При работе с указанными сталями различного легирования выгоднее отдать предпочтение материалам из соотношения Cr/Ni. Если это отношение в сталях более 1, то используются аустенитно-ферритные материалы. Это минимизирует появление горячих трещин в теле шва. Если же отношение Cr/Ni менее 1, то сварочные средства обязаны обеспечивать аустенитную и аустенитно-карбидную структурность шва.

Сварка материалов разных структурных классов

При необходимости объединения перлитной стали с высокохромистой мартенситной, ферритной, аустенитно-ферритной нередко возникновение холодных трещин, а также нежелательных прослоек в месте сплавления.

Такие соединения обычно выполняют с применением перлитных электродов для ручной сварки или проволоки при сварке под флюсом. Это позволяет добиться получения шовного металла с низким присутствием хрома, обеспечив тем самым необходимую долговечность и пластику шва и слоев. назначается аналогичной к высоколегированной стали.

Зачастую на практике сплавы из перлитных, мартенситных, ферритных сталей с аустенитными температурной обработке не подвергаются. Это ведет к понижению эксплуатационных возможностей. Отпуск находит применение в редких случаях, и его температура приближена к минимальной, для избегания появления прослоек.

В заключение следует заметить, что во всех остальных моментах технология сварки разнородных сталей ничем не отличается от сварки других видов металла.