Принцип работы сигнализатора давления топлива авиация. Принцип работы топливной системы самолета

Часть 10. Авиационные динамические насосы (наиболее часто применяются центробежные, но также используются осевые, вихревые и струйные насосы) используются главным образом для перекачивания авиационного топлива. Кроме топливных, на самолетах (пассажирских) используются насосы систем жизнеобеспечения (для чистой воды, санитарные и пр.), а также насосы систем термостабилизации для охлаждения (подогрева) радиоэлектронного оборудования (главным образом радаров и их электроники). Что касается топливных насосов, то в каждом баке самолета (а их может быть более 10) должен быть как минимум один топливный насос, топливные насосы также установлены на двигателях. Таким образом, число топливных насосов разных типоразмеров на самолете может превышать 30. . 40 штук 5. . 10 разных типов Лекции по Ти. ЭУ 1

Основные особенности авиационных насосов: 1. Жесткие ограничения по весу и габаритам (и вытекающая отсюда необходимость повышения частот вращения ротора) 2. Большое разнообразие конструкций из-за сложной конфигурации баков и трубопроводов в самолете 3. Удобство замены (модульная конструкция) 4. Высокая надежность в процессе работы 5. Большое разнообразие систем привода насосов (двигатели переменного тока 400 Гц, постоянного тока 27 и 110 В, гидропривод, пневмопривод и привод непосредственно от двигателя) 6. Необходимость резервирования насосов 7. Возможность работы на жидкостях с большим количеством растворенного воздуха (авиационное топливо может растворять большое количество воздуха) и в сложных кавитационных условиях (вследствие высоких частот вращения и возможных больших температур топлива, особенно в крыльевых баках) 8. Пожарная безопасность (топливо огнеопасно) 9. Большой диапазон режимов работы Лекции по Ти. ЭУ 2

Основные типы топливных насосов – это баковые (внебаковые и кессонные) насосы 1 ступени (как правило, с электроприводом ЭЦН), двигательные насосы с приводом от двигателя (2 ступени) – ДЦН и топливные насосы высокого давления (до 100 кгс/см 2), установленные на двигателе (насосырегуляторы и форсажные насосы). При этом баковые насосы применяются и для перекачивания топлива между баками (например, из внешних баков в расходный или между крыльевыми для уравновешивания самолета – балансировочные насосы БЦН) Лекции по Ти. ЭУ 3

Проблема постоянного снабжения топливом двигателей во всех режимах полета Самолет может совершать самые разнообразные маневры в процессе полета. Особенно это касается высокоманевренных военных самолетов. При этом система подачи топлива должна обеспечивать снабжение двигателей горючим во всех возможных положениях самолета и при разных перегрузках (в том числе отрицательных). Для этого используются различные схемы забора топлива из баков и/или топливные аккумуляторы, обеспечивающие кратковременную подачу топлива в баки при маневре. Лекции по Ти. ЭУ 9

Другой проблемой является работа насоса на жидкостях с высоким газосодержанием (с выделением газа на входе в насос) и при низких значениях кавитационного запаса на входе. Несмотря на наддув баков от компрессора двигателя, за счет нагрева топлива в баках, изменения положения зеркала топлива в баках и отрицательных перегрузок давление на входе в насос может падать почти до давления насыщенного пара для данной жидкости. Кроме того, кавитационные качества сильно зависят от частоты вращения вала насоса, которая для данных насосов высока. Проблема может быть решена следующими основными путями: 1. Снижение содержания газа на входе в лопастное колесо с помощью газосепараторов 2. Применение предвключенных струйных насосов для улучшения работы на газожидкостной смеси и повышения всасывающей способности 3. Использование предвключенных шнеков Лекции по Ти. ЭУ 12

Выбор типа привода для авиационного ЦБН должен производиться исходя из следующих требований: 1. Высокие частоты вращения вала насосов 2. Высокая надежность привода и его компактность, малый вес 3. На самолете обычно есть 2 вида электропитания – постоянный ток (обычно 27 В) и переменный (как правило 100200 В 400 Гц) 4. Насосы должны работать и в аварийных ситуациях, в том числе при сбое электропитания (не все, аварийные) 5. Желательно наличие жесткой характеристики привода для прогнозируемой работы насоса во всех режимах 6. Желательно – возможность управления параметрами двигателя и система его диагностики (реализуется, например, в современных двигателях с электронной коммутацией) 7. Очень важная задача – охлаждение двигателя в замкнутом объеме (обычно перекачиваемой жидкостью) для насосов внутрибакового исполнения Лекции по Ти. ЭУ 17

Исходя из вышеизложенного, для авиационных ЦБН применяются следующие типы приводов: 1. Электродвигатели постоянного тока с частотами вращения как правило от 5000 до 24000 об/мин и мощностью от 25 Вт до 15 КВт (обычно до 1 КВт) 2. Электродвигатели переменного тока (асинхронные, 400 Гц) на те же параметры 3. Пневмопривод (воздушная турбина) с отбором сжатого воздуха от компрессора двигателя 4. Гидропривод (гидротурбина) с питанием рабочей жидкостью (топливом) от насоса, установленного на двигателе 5. Аварийные приводы, например, выкидные воздушные турбины (обычно используются не для ЦБН, а для аварийных генераторов) 6. Наиболее современные – синхронные вентильные двигатели с ротором на постоянных магнитах Лекции по Ти. ЭУ 19

Возможные направления развития авиационных ЦБН 1. Применение герметичных синхронных вентильных электродвигателей с электронной коммутацией со встроенным регулированием по частоте вращения и датчиками состояния агрегата (включая датчики вибродиагностики) 2. Повышение частот вращения роторов насосов для уменьшения их веса и габаритов 3. Более широкое использование в конструкции неметаллических материалов, в т. ч. и в корпусных деталях 4. Использование подшипников скольжения с высокой износостойкостью для повышения ресурса работы Лекции по Ти. ЭУ 39

Назначение топливной системы самолёта

Топливная система предназначена для размещения на самолёте необходимого количества топлива и подачи его к двигателю (двигателям) на всех режимах полёта.

В качестве топлива на современных самолетах применяется высокооктановый бензин, для поршневых двигателей и авиационный керосин (Т-1, ТС-1, РТ и др.) для реактивных двигателей.

Топливная система условно делится на топливную систему самолета и топливную систему двигателя.

В любой топливной системе самолета можно выделить три характерных участка:

систему заправки топливом;

емкость для топлива;

систему подачи топлива к двигателю.

Заправка топлива в баки производится либо самотеком, либо централизованно.

Топливные емкости выполняются в виде отдельных баков или в виде отдельных герметизированных отсеков планера самолета. Топливные баки размещают на самолете так, чтобы центр тяжести всего топлива располагался вблизи центра тяжести пустого самолета. С целью обеспечения необходимой устойчивости по крену самолёта топливо из правых и левых баков вырабатывается равномерно с помощью автомата выравнивания или вручную. По размещению различают фюзеляжные и консольные топливные баки, по характеру применения – расходные и дополнительные.

Система питания топливом должна непрерывно подавать требуемое количество топлива в топливную систему двигателя. Система питания должна удовлетворять следующим требованиям :

обеспечивать надёжность питания двигателей топливом на всех режимах и высотах полёта независимо от атмосферных условий.

запас топлива на самолёте должен обеспечивать заданную дальность и продолжительность полёта.

возможность нормального питания двигателей при выходе из строя одного из баков или участков трубопровода.

быть удобной в эксплуатации и безопасной в пожарном отношении.

выработка топлива должна происходить по заданной программе и мало влиять на полётную центровку самолёта.

полную выработку топлива (остаток не более 1,5% ёмкости баков)

Различают топливные системы двух типов:

открытого;

закрытого.

В открытых – полости топливных баков сообщаются с атмосферой. В закрытых – эти полости сообщаются с системой забора воздуха от компрессора двигателя или поддавливаются нейтральным газом от специальной системы поддавливания.

Конструкция топливной системы самолета ТЛ-2000 (20 мин.).

Топливная система самолёта TL – 2000 Sting carbon открытого типа, т.е. полости топливных баков, сообщаются с атмосферой. Топливо подаётся к двигателю механическим насосом или электрической помпой.

Система питания топливом состоит из:

топливных баков;

трубопроводов;

перекрывного – пожарного крана;

фильтра – отстойника;

электрической помпы;

механического насоса;

системы контроля наличия и выработки топлива;

сливного топливного крана;

заправочных горловин.


Рис. 10.1. Принципиальная схема топливной системы TL – 2000 Sting carbon

Общие сведения.

Система топливопитания предназначена для размещения на самолёте необходимого количества топлива для полёта и подачи его к двигателям на всех режимах полёта. В качестве топлива на современных самолетах применяется авиационный керосин марок Т-1, ТС-1, РТ и др.

К топливным системам, в соответствии с нормами летной годности, предъявляются общие требования в отношении надёжности, живучести, пожарной безопасности, массовых и габаритных характеристик, простоты конструкции, ремонтопригодности и эксплуатационной технологичности.

Основные требования, предъявляемые к топливной системе:

Топливная система должна обеспечивать бесперебойное питание двигателей топливом на всех режимах полета;

В случае выключения подкачивающего насоса топливная система должна обеспечивать питание двигателей от МГ до взлетного режима на высотах до 2000 м с сохранением центровки и кренящих моментов в допустимых пределах;

- ёмкость топливных баков должна быть достаточной для выполнения полета на заданную дальность и должна включать аварийный (аэронавигационный) запас на 45 мин. полёта на крейсерском режиме (по нормам FAR и JAR);

Выработка топлива не должна существенно влиять на центровку ВС;

Топливная система должна быть безопасной в пожарном отношении;

Топливная система должна обеспечивать централизованную заправку, а также должна иметь приспособления для заправки под давлением;

Должна предусматриваться возможность аварийного слива топлива в полёте в случае, если максимальная масса ВС превышает допустимую из условий посадки;

Топливная система должна иметь возможность надежного и непрерывного контроля за очередностью и количеством выработки топлива, как в отдельном баке, так и в группе баков.

Система включает в себя топливные баки, систему дренажа топливных баков, систему централизованной заправки, системы подачи и перекачки топлива, систему централизованного слива отстоя топлива, систему сигнализации водного отстоя, органы управления и контроля топливной системы, топливомер и расходомер. На современных самолётах запасы топлива могут составлять от 20 до 50 процентов взлётной массы самолёта.

Для размещения топлива используют объёмы крыла и фюзеляжа. На пассажирских и грузовых самолётах топливо размещают в крыле, освобождая фюзеляж для полезной нагрузки.

По принципу размещения различают внутренние, подвесные, фюзеляжные, центропланные и консольные топливные баки, по характеру применения - расходные, предрасходные, балансировочные. Расходными называются баки, из которых топливо подаётся к двигателям. Предрасходными называются баки, из которых топливо подается в расходные баки. Балансировочными называются баки, из которых топливо перекачивается в другие топливные баки для обеспечения необходимой центровки самолёта.



Конструктивно топливные баки представляют собой герметичные отсеки воздушного судна, так называемые бакикессоны. От порядка выработки топлива из баков, обеспечиваемого автоматом расхода, зависит центровка самолёта. С целью обеспечения необходимой устойчивости по крену самолёта топливо из правых и левых баков вырабатывается равномерно с помощью автомата выравнивания или вручную.

Слив топлива из баков может производиться через сливные штуцеры, установленные на двигателях или через систему централизованной заправки.

На некоторых самолётах для уменьшения посадочного веса самолета предусмотрена система аварийного слива топлива. В этом случае система оснащается устройством, исключающим слив из баков топлива, потребного для питания двигателей при посадке.

Схема компоновки топливных баков на самолете-истребителе представлена на рисунке7.1.

Рис.7.1.Схема компоновки топливных баков на самолете-истрибителе

Из-за малых объемов конструкции крыльев основная масса топлива размещена в фюзеляжных мягких (с внутренним резиновым и наружным, создающим каркас бака, резинотканевым слоем) баках 3, размещенных сбоку от воздушных каналов 1 под обшивкой фюзеляжа. Жесткий топливный бак 6, сваренный из тонких листов алюминиево-марганцевого сплава, закреплен на конструкции в хвостовой части фюзеляжа под двигателем 4 и его выхлопной трубой 5.

Крыльевые баки-отсеки 7 и все фюзеляжные баки соединены трубопроводами с расходным баком-отсеком 2, из которого топливо подается к двигателю. В баке 2 размещен отсек отрицательных перегрузок, конструкция и топливная аппаратура которого позволяют подавать топливо к двигателю при любых маневрах самолета, в том числе и при перевернутом полете.

Герметичность (по имени легендарного египетского мудреца Гермеса Триждывеличайшего, которому, в числе прочего, приписывалось искусство прочной закупорки сосудов) баков-отсеков обеспечивается плотной постановкой заклепок в заклепочных швах и тепло-, морозо- и керосиностойкими герметиками (полимерными композициями, обеспечивающими непроницаемость швов) в местах соединения отдельных элементов конструкции.

Для увеличения дальности полета под крылом установлены подвесные топливные баки 8, топливо из которых вырабатывается на начальных участках полета и которые сбрасываются перед выполнением собственно боевой операции, так как они ухудшают маневренность и разгонные характеристики самолета. На военных самолетах широко применяется дозаправка топливом в полете путем перекачки топлива из баков самолета-заправщика.

Выбранное при компоновке самолета расположение, конфигурация и объемы топливных баков определяют порядок расходования топлива в полете и построение схемы топливной системы самолета.

Принципиальная схема топливной системы двухдвигательного пассажирского самолета

проиллюстрирована на рисунке 7.2.

Рис.7.2.Топливная система самолета представляет собой две автономные, аналогичные по конструкции системы: правую и левую, каждая из которых подает топливо к соответствующему двигателю.

В каждой половине (консоли) крыла передний и задний лонжероны совместно с верхней и нижней панелями крыла и герметическими нервюрами образуют три кессон-бака 1, 2 и 3.

Кессон-баки каждой консоли связаны трубопроводом 11, в котором установлен кран кольцевания (кран перекрестного питания) 12, обеспечивающий подачу топлива из левой группы баков в правую и наоборот. Трубопроводы топливной системы (топливопроводы) выполняются из алюминиевых и стальных труб.

Топливо из кессон-баков по трубопроводам 4, 5 и 6 с помощью спаренных (дублирующих друг друга) перекачивающих насосов 7 в определенном порядке перекачивается в размещенный внутри кессон-бака 1 расходный отсек 8, из которого спаренными подкачивающими насосами 9 под определенным давлением подается по трубопроводу 10 через перекрывной (противопожарный) кран 13 к агрегатам топливной системы на двигателе (подкачивающий насос 14, датчик расходомера 15, топливомасляный радиатор 16, топливный фильтр 17, насос-регулятор 18, после которого под высоким давлением через коллектор подается к форсункам камеры сгорания).

Дренаж топливных баков.

Дренажная (от англ. drain - осушать) система обеспечивает поддержание необходимой разницы давлений в надтопливном пространстве баков и окружающей атмосфере и уменьшение концентрации взрывоопасных паров керосина путем наддува (и вентиляции) баков воздухом через трубопроводы, выходящие к верхним точкам баков, за счет скоростного напора, воздухом от компрессоров двигателей или из бортовых баллонов, нейтральными газами из бортовых баллонов или специальных систем.

Дренаж топливных баков поддерживает в топливных баках заданное избыточное давление для: обеспечения бескавитационной работы насосов; обеспечения минимального внутреннего и внешних давлений на стенки баков; регулирования давления воздуха в баках при их заправке топливом и сливе его.

Для нормального функционирования топливной системы в надтопливном пространстве баков с помощью дренажных устройств поддерживается давление, значение которого определяется прочностью баков и кавитационными свойствами подкачивающих насосов. Дренаж баков может быть открытым либо закрытым. При открытом дренаже надтопливное пространство баков сообщается с атмосферой трубопроводом, конфигурация которого исключает вытекание топлива из баков при выполнении эволюции воздушного судна. Давление в баках зависит от формы заборного патрубка и располагаемого скоростного напора набегающего потока воздуха. При закрытом дренаже воздух для подачи в баки отбирается за компрессором двигателя. В этом случае устанавливаются клапан наддува, поддерживающий требуемое давление, и предохранительные клапаны.

Дренаж баков в большинстве случаев осуществляется открытой системой дренажа через дренажный отсек, соединенный трубопроводами с атмосферой через воздухозаборники.

Для предохранения системы дренажа при закупорке в трубопроводы, идущие от воздухозаборников дренажа, вварены патрубки, в которых установлены вакуумные клапаны дренажа, открывающиеся при создании в трубопроводе разрежения, предохраняя его от смятия.

Системы подачи и перекачки топлива.

Систему выработки топлива условно можно разбить на систему перекачки топлива и систему подачи его к двигателям. Схема подачи топлива к двигателям определяется количеством топливных баков, двигателей и их компоновкой на самолёте.

На многодвигательных самолётах применяются общие (централизованные), раздельные и автономные системы подачи топлива (см. рис. 8.1.). В общей системе топливо подается через расходный бак ко всем двигателям. В раздельных системах топливо подаётся к каждому двигателю от определённой группы баков. Автономные системы обеспечивают питание каждого двигателя из своего бака. Подача топлива к двигателям осуществляется из расходного (расходных) отсека с помощью насосов подкачки.

Рис.7.3. Классификация систем подачи топлива к двигателям: а - общая; б - раздельная; в - автономная; РО - расходный отсек; ПК - перекрывной кран; КК - кран кольцевания

В расходном баке размещаются, как правило, два насоса подкачки, которыми топливо подаётся к двигателям, датчики топливоизмерительной аппаратуры, элементы предохранения бака от переполнения при перекачке в него топлива из других баков, а также устройства, разгружающие стенки бака от чрезмерного давления. Бесперебойная работа двигателя на режимах полёта с нулевыми или отрицательными перегрузками обеспечивается встроенным в конструкцию расходного топливного бака противоперегрузочным отсеком, в котором устанавливается насос подкачки, либо топливным аккумулятором. Принцип действия противоперегрузочного отсека основан на том, что топливо из бака свободно поступает в отсек и заполняет его, но при отливах топлива в расходном топливном баке оно из отсека уйти не может. Объём отсека обеспечивает работу насоса в течение заданного расчетного времени действия перегрузок, в результате которых произошёл отлив топлива в расходном топливном баке.

Подача топлива к насосам высокого давления двигателей для обеспечения их бескавитационной работы производится при двухступенчатом повышении давления. Вначале давление повышается баковыми насосами подкачки, а затем двигательным насосом. В магистралях подачи топлива в двигатели устанавливаются обратные клапаны, краны кольцевания, топливные аккумуляторы, обеспечивающие питание двигателей топливом на режимах полёта с околонулевыми и отрицательными вертикальными перегрузками, перекрывные краны, датчики расходомёров, топливомасляные теплообменники и фильтры.

Топливные фильтры снабжаются перепускными клапанами, через которые обеспечивается питание двигателя топливом в случаях засорения или обледенения фильтра.

Наличие линии кольцевания с кранами кольцевания обеспечивает подачу топлива в любой двигатель при отказах в подкачивающей магистрали любого расходного бака, а также служит для выравнивания количества топлива в симметричных баках.

Топливный аккумулятор (см. рис. 7.4.) представляет собой цилиндрический или сферический сосуд, разделённый прорезиненной мембраной на две полости - воздушную и топливную. Воздушная полость находится под давлением сжатого воздуха. Топливная полость соединена с трубопроводом, идущим от подкачивающего насоса к двигателю, и при работающем подкачивающем насосе заполнена топливом, так как давление воздуха в воздушной полости меньше минимально возможного давления топлива. При этом мембрана прижата к стенкам сосуда

и весь его объём заполнен топливом. При отливе топлива от насоса давление в трубопроводе за ним падает, сжатый воздух давит на мембрану и она вытесняет топливо из топливной полости в магистраль подкачки (проходу топлива в насос препятствует установленный в магистрали обратный клапан). Вместимость топливного аккумулятора определяется расчётным временем действия перегрузок, приводящих к отливу топлива от насоса.

Рис. 7.4. Топливный аккумулятор: 1 - полусфера; 3 - резинотканевая мембрана; 4 - прокладки; 5 - болт; 6 - штуцер трубопровода отвода газов; 7 - диафрагма; 8 - полусфера; 9 - патрубок отвода топлива; 10 - профиль; 11 - стыковые кольца; 12 - патрубок подвода топлива; 13 - штуцер сливного крана; 14 - штуцер трубопровода наддува

Подача топлива в двигатели контролируется сигнализаторами давления, датчики которых устанавливаются за каждым баковым насосом подкачки и на входе в насос высокого давления двигателя, а также сигнализаторами перепада давления, характеризующими состояние фильтров. Сигнализация осуществляется обычно на мнемосхеме топливной системы в кабине экипажа.

Системы перекачки топлива выполняют различные функции и могут быть подразделены на основную, вспомогательную и балансировочную. Основная система перекачки топлива обеспечивает подачу топлива из баков в расходные отсеки в определённой очередности. Вспомогательные системы обеспечивают откачку топлива из дренажных бачков, выработку остатков топлива из баков и т.д. Система балансировочной перекачки обеспечивает необходимую центровку самолёта.

Для повышения надёжности работы в баках устанавливают по два электрических центробежных насоса. В последнее время в системах перекачки топлива дополнительно используются струйные насосы.

Примером наиболее характерной топливной системы может служить самолёт Ту-154, на котором используется централизованная топливная система (см. рис. 7.5.). Ко всем трём двигателям этого самолёта топливо подаётся из общего расходного бака, а из остальных баков топливо перекачивается в расходный бак по определённой программе. Для обеспечения равного расхода топлива, перекачиваемого в расходный бак из баков левого и правого крыла, используется порционер.

Рис. 7.5. Принципиальная схема топливной системы с расходным баком: 1 - кессон-бак расходный; 2, 3, 4 - кессон-баки; 5 - насосы перекачки; 6 -подкачивающий насос; 7 - порционер; 8 - блок обратных клапанов; 9 - обратные клапаны

На самолёте Ил-76 топливо в процессе выработки перекачивается в расходные отсеки последовательно из резервных и дополнительных баков перекачивающими насосами, установленными по два насоса в каждом баке. Из расходных отсеков, установленных в главных баках, топливо подается к двигателям двумя подкачивающими насосами. Управление порядком выработки топлива производится системой управления и измерения топлива, работающей от сигнализаторов уровня топлива в очередных баках.

На самолете Як-42 топливо размещено в трех кессонах (см. рис. 7.6.) - двух крыльевых и одном центропланом (среднем).

Рис.7.6. Топливная система самолета Як - 42

Органы управления агрегатами топливной системы размещены на верхнем пульте кабины экипажа и пульте управления ВСУ.

На щитке топливной системы расположены:

АЗР-ы "НАСОСЫ ВКЛ. ОТКЛ." для управления подкачивающими насосами;

Зеленые светосигнализаторы наличия давления топлива за насосами;

Желтые светосигнальные табло "НЕТ ДАВЛ. ТОПЛ." сигнализации падения давления топлива на входе в двигатель;

Выключатели "ЛЕВ. КРАН КОЛЬЦ." и "ПРАВ. КРАН КОЛЬЦ." для ручного управления кранами кольцевания;

Выключатель "ОТКЛ. АВТОМ. КРАН КОЛЬЦ." для автоматического управления кранами кольцевания. В исходном положении выключатель закрыт крышкой, законтрен и опломбирован.

В таком положении выключателя краны кольцевания открываются автоматически только в полете (при разжатой левой опоре), если обесточена сеть переменного тока 200В или загорелось одно из табло "320 кг".

Желтые и зеленые лампы кранов кольцевания, которые срабатывают так же, как соответствующие лампы пожарных кранов;

Светосигнальные табло "670 ЛЕВ., СРЕДН., ПРАВ.", "320 ЛЕВ., СРЕДН., ПРАВ." для сигнализации остатка топлива;

Кнопка "КОНТРОЛЬ СИГНАЛИЗАТОРОВ" для проверки сигнализаторов СУИТЗ.

Контроль работоспособности сигнализаторов остатка топлива "870" и "320" выполняется при заполненных топливных кессонах. Четыре пожарных крана (три для двигателей Д-36 и один для ВСУ) управляются четырьмя переключателями "ПОЖАРНЫЕ КРАНЫ ТОПЛИВА", расположенными на панели "ПРОТИВОПОЖАРНАЯ СИСТЕМА" на верхнем пульте. Закрытое и открытое положения пожарных кранов контролируются четырьмя желтыми и четырьмя зелеными сигнальными лампами, размещенными там же.

Система управления и измерения топлива предназначена для:

Измерения количества топлива в центропланном (среднем) кессоне и в каждом крыльевом (левом и правом) кессонах и выдачи информации на индикатор, установленный на приборной доске;

Измерения суммарного количества топлива в кессонах и выдачи информации на индикатор, установленный на приборной доске;

Измерения заправляемого количества топлива в центропланном (среднем) кессоне и в каждом крыльевом (левом и правом) кессонах;

Выдачи на табло "ТОПЛИВО 870", установленные на верхнем пульте в кабине экипажа, сигналов остатка топлива в центропланном кессоне 870 кгс и в каждом крыльевом кессоне 870 кгс;

Выдачи на табло "ТОПЛИВО 870" дублирующих сигналов остатка топлива 650 кгс по каждому кессону;

Выдачи на табло "ТОПЛИВО 320", установленные на верхнем пульте, сигналов остатка топлива в центропланном кессоне 320 кгс и в каждом крыльевом кессоне 320 кгс;

Выдачи сигналов о суммарном количестве топлива в самолетный ответчик и МСРП-64М-2.

Суммарное количество топлива определяется по показаниям трехразрядного барабанчикового счетчика, а количество топлива в каждом кессоне - по показаниям трех индексов профилей индикатора, которые устанавливаются против деления шкалы, соответствующего количеству топлива в кессоне.

Работа измерительной части основана на измерении электрической емкости датчиков, изменяющейся с изменением уровня топлива в баках. Электроёмкостные датчики выполняются в виде конденсатора из коаксильно расположенных труб. Работа автоматической части управления расходом и заправкой основана на свойстве катушки индуктивности датчика - сигнализатора изменять индуктивное сопротивление от перемещения в ней стального сердечника при изменении уровня топлива. Измерение количества топлива в баке при помощи поплавково-рычажных топливомеров основано на принципе преобразования с помощью реостата перемещения поплавка в электрический сигнал.

Для измерения мгновенного расхода топлива каждым двигателем и остатка топлива в баках для каждого двигателя предназначен расходомер. Крыльчато-тахометрический расходомер представляет собой преобразователь, генерирующий электрический сигнал, пропорциональный расходу протекающего топлива и состоящий из расходомерной трубы, в которой установлена лопастная турбина, и системы измерения скорости вращения турбины.

Каждый из трех двигателей Д-36 и ВСУ питается топливом из соответствующего топливного кессона и имеет автономные трубопроводы питания топливом и агрегаты подачи топлива.

Топливо к двигателям подается под давлением подкачивающими насосами, установленными в кессонах. К каждому боковому двигателю Д-36 топливо из кессонов подается двумя электроприводными подкачивающими насосами, включенными в магистраль питания параллельно. Средний двигатель питается топливом от двух электроприводных подкачивающих насосов, установленных в среднем кессоне.

К магистральным трубопроводам питания двигателей Д-36 подсоединены обратные самотечные (обратные запорные) клапаны, предназначенные для подачи топлива к двигателям самотеком в случае отказа подкачивающих насосов. Кроме того, для обеспечения питания двигателей топливом под давлением при отказе отдельных подкачивающих насосов

магистральные трубопроводы питания боковых двигателей соединены с магистралью питания среднего двигателя через два крана кольцевания трубопроводом кольцевания.

В магистрали питания двигателей Д-36 включены топливные аккумуляторы и электроприводные перекрывные пожарные краны.

Питание топливом ВСУ осуществляется из центропланного кессона пусковым насосом постоянного тока. При работе подкачивающих насосов расходный отсек всегда (кроме случая отрицательной перегрузки) заполнен топливом. Топливо в расходный отсек боковых кессонов подается двумя струйными насосами, в расходный отсек среднего кессона четырьмя струйными насосами, использующими для своей работы активное топливо, отбираемое от подкачивающих насосов.

В стенках расходного отсека установлены три обратных клапана, обеспечивающие приток топлива в расходный отсек в случае питания двигателя на самотеке.

Система дренажа - открытого типа, с отбором воздуха для подачи в топливные кессоны непосредственно из атмосферы. Каждый боковой кессон имеет свою систему дренажа.

Для дренажирования среднего кессона в верхнюю его часть из дренажных отсеков боковых кессонов выведены два дренажных трубопровода.

Если разница топлива в симметричных баках превысит допустимую величину, его количество выравнивается следующим образом:

Открываются краны кольцевания симметричных двигателей;

Отключаются подкачивающие насосы двигателя с меньшим остатком топлива и вырабатывается топливо из баков двигателя с большим остатком до выравнивания его количества;

Включаются ранее выключенные подкачивающие насосы;

Закрываются краны кольцевания.

При отказе двух насосов в одном баке двигатели питаются самотеком. Полет выполняется с минимальными эволюциями на высоте, обеспечивающей устойчивую работу двигателя.

При всех обесточенных насосах полет выполняется с минимальными эволюциями до ближайшего аэродрома.

Перед полетом экипаж обязан:

Принять доклад от авиатехника о количестве и сорте заправленного топлива;

Убедиться, что слит отстой топлива и в нем отсутствуют механические примеси и вода, а в зимнее время кристаллы льда. Произвести внешний осмотр самолета, при этом проверить, нет ли течи бензина, проверить заправку самолета топливом. После посадки в кабину необходимо включить и проверить исправность топливомера, суммарное количество топлива в баках и количество топлива отдельно в левом и правом крыле. Контроль за расходом топлива в полете осуществлять по топливомеру и часам. Загорание сигнальной лампы с красным светофильтром на световом табло ОСТАТ. ТОПЛ. указывает пилоту на то, что в баках осталось на 30 мин полета.

Топливный бак – это емкость, в которой хранится жидкое топливо, он размещается непосредственно на борту самолета. От топливных баков идут топливные провода к силовой установке, что и обеспечивает ее питание горючим. Также на борту самолета могут размещаться баки для снабжения горючим отопительных систем.

Турбовинтовые и турбореактивные двигатели самолетов в своей работе используют авиационный керосин с дополнительными присадками. Легкомоторная авиация, оснащенная поршневыми силовыми установками, в качестве горючего использует бензин с высоким октановым числом.

Топливный бак в крыле самолета

В современном самолетостроении используют кессон-баки, они имеют вид герметичных полостей. В основном они устанавливаются в крыльях, стабилизаторе и киле. Это мягкие баки, изготовленные из резиновых материалов, это позволяет сохранить их целостность при перегрузках и ударах. Кроме того, подобный материал очень надежен и эффективно занимает отведенное пространство.

Иногда используют баки-отсеки, которые выполняют как роль топливной емкости, так и роль силового элемента. Чтобы предотвратить проливание топлива из кессон-баков, на истребителях используют губчатый наполнитель по типу поролона.

Большие авиалайнеры, которые предназначены для дальних перелетов, имеют несколько топливных баков, которые дополнительно оснащаются насосами. Все топливные баки соединяются между собой системой топливных проводов, которые позволяют использовать топливо из любого бака или производить его перекачку. Перекачка топлива из одного бака в другой возможна благодаря осуществлению более эффективной центровки летательного аппарата. Топливо из расходных баков перекачивается в запасные соответственно с разработанной программы расхода горючего в полете.

Топливные баки изготовленные из стандартных алюминиевых канистр

Нужно отметить, что сам процесс заправки топлива в баки самолета происходит также в соответствии с планом центровки. Горючее подается в баки аппарата под давлением из специального заправщика через горловину, после чего оно распределяется между баками.

Каждый топливный бак в самолете имеет так называемую горловину слива, через которую можно слить все топливо. После каждой заправки проводится открытие данной горловины, что позволяет слить осевший на дне бака конденсат или воду. Естественно, в баке не должно быть никаких примесей, иначе это может послужить причиной отказа двигателя и аварии.

Также самолеты имеют системы аварийного сброса топлива прямо в воздухе. Данная система необходима при выполнении аварийных посадок, непосредственно после взлета, поскольку допустимая масса посадки летательного аппарата значительно меньше, нежели взлетная масса.

Топливный бак в лонжероне

Боевые самолеты, которым необходимо выполнять боевые операции на большом удалении от базы, могут оснащаться дополнительными баками подвесного типа. Они имеют обтекаемую форму для улучшения общей аэродинамики и подвешиваются к фюзеляжу или крылу самолета. После выработки всего горючего они сбрасываются. Также подобные устройства применяются для перегонки самолетов на другие аэродромы дислокации, они, как правило, установлены в середине корпуса.

Подвесные топливные баки

Безопасность топливных баков

Боевые самолеты и некоторые пассажирские машины используют нейтральный газ для заполнения баков, который подается по мере расходования горючего. В качестве газа используют углекислоту или азот. Это позволяет предотвратить пожар на борту или взрыв топливного бака из-за механических повреждений. Подобную схему заполнения газами топливного бака использовали еще во Второй мировой войне, только в качестве газа использовали охлажденный выхлоп из коллектора двигателя.


Разберём следующую, жизненно важную самолётную систему - топливную. Основное её предназначение, это обеспечение бесперебойной подачи топлива к двигателям самолёта. Топливная система самолёта состоит из системы размещения топлива на самолёте, системы подачи его в двигатели, системы измерения топлива в баках , и системы заправки. Всё топливо, на современных самолётах, располагается, как правило, в крыле, в нескольких баках. Количество баков в может быть различным от трёх до восьми и более.(см. рис1,2,3) На рисунке 1 показано размещение топливных баков на самолёте Ту-134 , где 1,2,3 левые и правые баки, "рб" расходный бак, "дб" бополнительные баки.


Рис.1

На рисунке 2 показано расположение баков на самолёте Ту-154


Рис.2

На рисунке 3 показано расположение баков на самолётах семейства А-320. Дренажный бак на концах крыла предназначен для перетекания в него топлива из других баков, в случае его теплового расширения, при стоянке с полными баками, а также для кратковременного заполнения этого бака в случае отказа клапанов заправки, во избежании раздутия баков.


Рис.3

Есть самолёты у которых часть топливных баков располагается в хвостовой части самолёта, например Ил-62, боинг-747.
Топливный бак представляет из себя кессон , являющийся силовым элементом крыла самолёта. Изнутри топливный бак по всей поверхности покрыт специальным герметизирующим составом, который предотвращает утечки топлива через стыковые технологические поверхности. Этот состав, в жидком состоянии, наносится на внутреннюю поверхность кессона при его изготовлении, затем на специальном стенде, кессон вращается во всех плоскостях, обеспечивая равпомерное растекание герметизирующего состава по всей внутренней поверхности.
Основной принцип топливных систем всех самолётов заключается в том, чтобы каждый двигаталь питался от своего бака, левый двигатель от левого бака или группы баков , средний, от центрального бака, правый двигатель от правой групы баков. Если двигателей на самолёте всего два, то сначала они питаются от центрального бака, а затем каждый от своего.
Для обеспечения бесперебойной подачи топлива к двигателям, все топливные баки, или группы баков, кольцуются между собой посредством специальных кранов кольцевания "1"(см рис.4)


Рис.4

Краны кольцевания в нормальном состоянии перекрыты, и открываются только в случае отказа какой-либо системы подачи топлива к любому двигаталю, обеспечивая его бесперебойную работу.
В топливной магистрали каждого двигателя установлены фильтры тонкой очистки "4"(рис4). Фильтроэлемент выполнен из металлической сетки саржевого плетения с размером плетения всего несколько микрон. В случае засорения топливного фильтра, вокруг него предусмотрен обводной трубопровод "5"(см.рис4), по которому топливо пойдёт не очищенным, также обеспечивая работу двигателя.
Непосредственно перед двигателем устанавливается пожарный кран "3"(рис4), который перекрывается в случае возникновения пожара на двигателе. При стоянке самолёта с выключенным двигателем пожарный кран закрыт.
Авиационное топливо не является идеальным чистым, хотя и имеет высокую степень очистки, оно содержит растворимую в нём воду. Вода в топливо поступает из атмосферы, во время контакта поверхности топлива с воздухом в топливном баке. Т.к. плотность воды больше чем у топлива, вода постепенно отстаивается и опускается на дно бака. Перед каждой новой заправкой топлива и после её окончания производится слив отстоя воды из топливных баков через специальные краны слива. Это является обязательной операцией при подготовке самолёта к вылету. Но тем не менее растворённая вода всё равно присутствует в топливе.
Как уже отмечалось на странице , температура воздуха на высоте 10-11километров составляет -50 0 С. Топливо при таких температурах особо не меняет своих свойств, а вот растворённая в нём вода кристаллизуется и попадая на топливные фильтры кристаллы воды начисто их забивают. Чтобы предотвратить негативное воздействие этого явления, в магистрали подачи топлива к каждому двигателю установлены топливно маслянные радиаторы (агрегаты) ТМР(ТМА)"2"(см. рис4). Установка этих агрегатов убивает сразу два зайца, во-первых в них происходит нагрев топлива (после прохождения ТМР кристаллизация воды отсутствует), во-вторых происходит охлаждение масла из маслянной системы двигателя. Т.о. получаем двойную выгоду. Кроме того, для предотвращения кристаллообразования в зимнее время в топливо многих самолётов добавляюися специальные присадки, их применение также повышает стабильность работы топливной системы.
Исходя из условия обеспечения сохранения центровки в заданных пределах, выработка топлива из баков осуществляется в определённой последовательности. Для каждого самолёта она своя, есть самолёты с простой последовательностью выработки, например на Б-737, сначали вырабатывается топливо из центрального бака, а потом из крыльевых. На Як-42 вообще нет ни какой последовательности, здесь центровка ни как не зависит от выработки топлива. Но бывают случаи по сложнее, в качестве примера приведу последовательность выработки на самолёте Ту-134(см рис1). При полной заправке, сначала топливо вырабатывается из 3их баков полностью(1очередь), затем топливо начинает вырабатываться из 1вых баков до остатка в них 2200кг(2а очередь). После остатака 2200кг в 1вых баках, выработка переключается на 2ые баки(3я очередь), после полной выработки из 2ых баков, выработка вновь переключается на 1ые баки(2б очередь), здесь происходит полная выработка топлива. Надо отметить, что последовательность выработки топлива полностью автоматизирована и лишь контролируется экипажем ВС, но в случае её отказа, выработка может осуществляться и в ручную, но с соблюдением той же последовательности. Т.о. каждому самолёту присуща своя система выработки.
Для обеспечения бесперебойной подачи топлива к двигателям при эволюциях, на самолётах установлены расходные баки . Всё топливо, подающееся к двигателям, проходит через эти баки. Смысл их в том, что они всегда полные. Во время полёта самолёта происходит постоянное их пополнение из топливных баков специальными насосами перекачки, в самих же расходных баках установлены подкачивающие топливные насосы . Для обеспечения надёжности системы, на многих самолётах насосы спаренные, причём иногда электропитание таких насосов производится от различных шинн, т.е. имеет различное напряжение.
К перекачивающим насосам относятся внутрибаковые насосы ЭЦН-91С, ЭЦН-91Б внебаковые агр.463 и др. К подкачиваемым ЭЦН-14, ЭЦН-45, ЭЦНГ-5 и др.(cм. рис5)



Рис.5

Сигнализация работы всех топливных насосов работает по следующему принципу: в топливном трубопроводе, за каждым насосом, устанавливается датчик мембранного типа. Как только насос начинает работать, давление топлива в трубопроводе за насосом увеличивается, мембрана датчика прогибается и замыкает контакты цепи сигнализации. В результате в кабине пилотов на панели топливной системы, загорается лампочка или индикатор работы конкретного насоса, как только топливо в баке заканчивается, насос начинает прохватывать воздух, давление в трубопровобе начинает "скакать", в результате лампочка на топливной панели моргает, сигнализируя об оканчивающемся топливе. Включение насосов без топлива не рекомендуется, т.к. топливо одновременно является смазывающим элементом трущихся детелей насоса. Все подкачивающие и перекачивающие насосы центробежного типа, устанавливаются как можно ближе к дну бака, чтобы обеспечить максимальную выработку топлива.

Измерение топлива в баках происходит с помощью датчиков ёмкостного типа . Такой датчик представляет собой, по сути, конденсатор, ёмкость которого меняется в зависимости от среды между пластинами. Изменение уровня среды, приводит к изменению его ёмкости, замеряя эту ёмкость,фактически мы замеряем уровень.
В каждом баке, в разных местах, установлено по несколько ёмкостных датчиков . Так как высота бака в разных местах разная, то и длина датчиков будет различна (см.рис6). Все ёмкостные датчики устанавливаются в баках и регулируются таким образом, чтобы при эволюциях самолёта показания датчиков на указателе количества топлива были не изменны. Причём замерять можно как суммарное количество топлива, так и количество топлива в каждом баке по отдельности.
Заправка самолёта топливом может осуществляться централизованно, т.е. через заправечный шланг могут заправляться сразу все баки, и открытым способом, т.е. через верхние заправочные горловины. К недостаткам открытой заправки можно отнести то, что при ней возможно попадание грязи, мусора и атмосферных осадков в бак через горловину, а также более длительное время заправки, ведь баки заправляются по одному. На современных самолётах открытая заправка уже не применяется.
Для обеспечения центровки самолёта при его стоянке, централизованная заправка осужествляется в строгой последовательности. Для каждого самолёта она своя. Выбор последовательности заправляемых баков, зависит от количества заправляемого топлива. Если самолёт летит не на максимальное расстояние, то нет необходимости заправлять полные баки, при этом некоторые баки могут вообще не заправляться, например на Ту-134 при длительности рейса 2 часа, третьи баки не заправляются, на Б-737 остаётся сухим центральный бак.
Централизованная заправка осуществляется со специального щитка заправки. На нем, как правило, выставляется способ заправки(в автомате или вручную). При автоматическом способе заправки, на специальном задатчике выставляется количество заправляемого топлива и открывается центральный заправочный клапан, клапаны заправки каждого бака могут открываться автоматически, а могут открываться и вручную. Закрытие клапанов заправки, при достижении заданного количества топлива, происходит автоматически от датчиков заправки, которые, конструктивно, аналогичны датчикам системы измерения, т.е. являются ёмкостными.
При ручной централизованной заправке необходимо постоянно контролировать количество заправляемого топлива, воизбежании перезаправки топливного бака.
Для предотвращения перезаправки в автоматическом режиме, применяется несколько блокировок закрытия клапанов заправки каждого бака, как от датчиков заправки, так и применение простого поплавкового клапана.
На всех самолётах применяется система дренажирования топливных баков . Конструктивно они выполнены по разному, но суть у всех одна, топливные баки болжны быть сообщены с атмосферой, иначе при выработке топлива в баке начнёт создаваться вакуум и топливо перестенет поступать к двигателям. У системы дренажа есть и ещё одна функция, это предотвращение раздутия баков на стоянке самолёта с полной заправкой при повышении температуры воздуха. Некоторые самолёты просто сбрасывают увеличившееся в объёме топливо на стоянку.
Следует отметить, что измерение топлива при заправке самолёта производится в литрах, галонах и других размерностях объёма. А вот измерение количества заправленного топлива производится уже в килограммах или тоннах. Для чего это зделано, наверно понятно. Вес топлива, это уже массовая характеристика, в литрах взлётный вес не измериешь.
При выполнении заправки самолёта любым способом всегда строго соблюдаются правила техники безопасности и пожарной безопасности. На территории аэропорта вообще запрещено курение в неположенном месте. Перед заправкой, сам самолёт и подъехавший к нему топливозаправщик, специальными тросами заземляются к специальным колодцам заземления, каждый по отдельности, также прокладывается специальный трос выравнивания потенциала между самолётом и топливозаправщиком. Только после прокладки всех этих тросов, можно подсоединять заправочный рукав к заправочному штуцеру самолёта. Ну вот наверное и всё про топливную систему, у кого возникли вопросы пишите на