Страны лидеры по робототехнике. Робототехника - глобальные перспективы, самые перспективные компании и проекты

И к 2025 году отгрузки утроятся.

2016.04.28 Boston Consulting Group прогнозирует, что доля задач, решаемых с помощью роботов вырастет с 8% сегодня до 26% к 2025 году. Лидерами роботизированного производства будут Китай, Германия, Япония, Южная Корея и США. Совокупно на их долю придется 80% всех покупок роботов. В отличие от людей, которые за 10 лет могут удвоить производительность, роботы способны удваивать свою каждые четыре года - это оценка аналитика Sirkin из BCG. / next.ft.com

2020

Прогноз объема мирового рынка промышленных роботов в 2020 году - $44.44 млрд /

Прогноз числа установленных в мире промышленных роботов в 2020 году - 2.5 млн. Прогноз IFR в 2016 году.

Прогноз объемов продаж коботов (коллаборативных роботов) на 2020 год - $3 млрд в 2016 году. / news.nationalgeographic.com

2019

Прогноз IFR - к 2019 году число используемых промышленных роботов вырастет до более, чем 2.5 млн. Согласно прогнозам, в период с конца 2015 года по конец 2019 года, число установок новых роботов в мире достигнет 1,4 млн, тогда как за период с 2012 по 2015 число таких установок не превышало 0,8 млн. Можно с уверенностью говорить о постоянном росте объемов отгружаемых в мире промышленных роботов. В среднем - на 13% в год.


2018

Кроме того, в Китае ожидают, что объем производства собственных промышленных роботов в 2018 году будет достигать около 100 тысяч роботов в год. /

2019.06 Число промышленных роботов, закупленных в Россию в 2018 году, составило 860. Оценка НАУРР.

2017

2017.09 В Казахстане насчитывается 70 промышленных роботов на 10 тыс. / sng.fm

2016


2017.04 В 2016 году в мире зафиксированы рекордные объемы отгрузок промышленных роботов, они составили 290 тысяч штук, что на 14% больше, чем в 2015 году. К сожалению, российский вклад в эти данные ничтожен, и внедрения промышленных роботов в нашей стране, напротив, в 2016 году заметно сократились - до менее, чем 0.5 тыс.

2017.04 По оценкам IFR, объем мирового рынка по итогам 2016 года составил $35 млрд, общее число роботов в мире в эксплуатации - 1,6 млн штук.

2016.10.03 В 2015 году общие поставки промышленных роботов выросли на 15% (в 2014 году рост составил 29%), в IFR предсказывают 13-14% среднегодовой рост в пределах пары следующих лет. /

2016.10.03 В 2014 году общие поставки промышленных роботов выросли на 29%, - данные IFR. /

Boston Consulting Group прогнозирует, что цена промышленных роботов и ПО для них в ближайшие 10 лет снизится на 20%, при этом их производительность будет увеличиваться на 5% ежегодно. / next.ft.com

3/4 всех промышленных роботов работают в четырех секторах: производстве компьютеров и электроники; производстве бытовой техники и компонентов; производстве транспортного оборудование; машиностроении. Частично это объясняется причинами экономического свойства в соответствующих отраслях и частично из-за ограниченности технологических возможностей. / next.ft.com

Период окупаемости сварочного робота на автосборочном производстве в Китае сократился с 5.3 года до 1.7 года в период с 2010 по 2015 год, согласно расчетам аналитиков Citi. К 2017 году период окупаемости сократится до 1.3 года. / next.ft.com

Продажи промышленных роботов в мире выросли на +8% гг по итогам 2015 года по данным WRF. Особым спросом пользовались Articulated robots с вращающимися захватами.

Коллаборативные роботы (коботы) также пользовались повышенным спросом, их доля при этом не достигла 5%. В Barclays Capital в 2016 году оценивали объем рынка коботов более, чем в $100 млн. Прогноз на 2020 год - $3 млрд. / news.nationalgeographic.com

Число проданных в 2015 году роботов впервые превысило 240 тысяч. Лидирующий потребитель - рынок Китай, где закупили 16% всего общемирового пула произведенных роботов, что соответствует 66 тыс. В эту цифру включены роботы местного производства, а также поставки Kuka, Fanuc и ABB. Европа "поглотила" почти 50 тысяч роботов, что соответствует росту на 9%. Продажи в Северной Америке выросли на 11% до 34 тысяч. / fortune.com

Рост закупок промышленных роботов в Китае составил 20% (пик роста был в 2014 году - 56%). Совокупная доля китайских производителей промышленных роботов на мировом рынке выросла до 29% (было 25% в 2013 году). /

2014

Продажи промышленных роботов по странам в 2014 году

Проникновение промышленных роботов на 10 тысяч работников в разных странах мира. Проникновение роботов в Китае при этом не слишком велико - 36 на 10 тысяч промышленных работников. В Германии этот показатель - 292, в Японии - 314, в Южной Корее - 478. Данные IFR (International Federation of Robotics).

В 2014 Китай приобрел 57 тысяч роботов по данным IFR. В период с 2010 по 2014 годы закупки роботов Китаем росли в среднем на 40% ежегодно - явление уникальное.

На 2014 год оценка числа сварочных роботов в России - 350 штук (1.2% мирового рынка), в Китае - 7500 штук (27.1% мирового рынка). / mashportal.ru со ссылкой на данные "Кемппи Россия". Наиболее перспективные отрасли для применения роботизированной сварки в России являются судостроение, машиностроение, атомная энергетика, нефтегазовая промышленность.

2013

Оценка рынка промышленных роботов в мире в 2013 году - $28,93 млрд. /

С 2013 года на рынок Китая ежегодно поступает больше промышленных роботов, нежели на рынок любой друой страны в мире.

2012

В США по итогам 2012 года насчитывается 135 промышленных роботов на 10 тыс. рабочих. / IFR

Алиса Конюховская - [email protected]

Мировой рынок промышленной робототехники показывает высокий темп роста. Какие регионы и страны являются лидерами мирового рынка? Какие отрасли демонстрируют наибольший спрос? На каком уровне развития находится российский рынок промышленной робототехники? Какие существуют ограничения развития российского рынка? Ответы на все эти вопросы представлены в данной статье.

С 2010 г. спрос на промышленные роботы значительно вырос в связи с трендом автоматизации производства и техническими усовершенствованиями промышленных роботов. В период между 2010 и 2014 гг. средний рост их продаж составлял 17% в год: между 2005 и 2008 гг. было продано в среднем около 115 тыс. шт. роботов, в то время как между 2010 и 2014 гг. средний объем продаж вырос до 171 тыс. шт. (рис. 1). Увеличение поставок произошло приблизительно на 48%, что является признаком значительного роста спроса на промышленных роботов по всему миру. В 2015 г. было продано уже более 250 тыс. роботов, что стало новым рекордом рынка, который вырос на 8% за год. Наибольший спрос был зарегистрирован в автомобилестроении.

Регионы

Азия (включая Австралию и Новую Зеландию) – самый крупный рынок: в 2014 г. было продано около 139 300 промышленных роботов, что на 41% превысило показатель 2013 г.. В 2015 г. в азиатском регионе было продано более 144 тыс. шт.

Европа – второй по размеру рынок, где продажи в 2014 г. увеличились на 5%, т.е. до 45 000 шт. В 2015 г. продажи в Европе выросли на 9% и достигли 50 000 единиц. Самый бурный рост в 2015 г. продемонстрировал рынок Восточной Европы – в 29%.

Северная Америка – третий рынок по объему продаж: в 2014 г. было продано 32 600 шт., что на 8% больше, чем в 2013 г., а в 2015 г. было продано 34 000 шт., что стало новым рекордом для региона. В первом квартале 2016 г. в регионе было продано 7 125 роботов на $448 млн. Также североамериканскими компаниями было заказано 7 406 роботов общей стоимостью около $402 млн, что превышает на 7% объем заказов за тот же период в прошлом году.

Страны-лидеры

Китай крупнейший рынок промышленных роботов и самый быстрорастущий рынок в мире. В 2014 г. было продано 57 096 промышленных роботов, что на 56% больше, чем в 2013 г.. Из них китайскими поставщиками была произведена установка около 16 000 роботов – по информации Китайского Альянса Робототехнической Отрасли (China Robot Industry Alliance, CRIA). Объем продаж стал на 78% выше, чем в 2013 г.. Частично это связано с тем, что увеличилось число компании?, которые впервые предоставили свои данные о продажах в 2014 г.. Иностранные поставщики промышленных роботов в Китае увеличили свои продажи на 49%, т.е. до 41100 единиц, включая роботов, изготовленных международными производителями в Китае. В период между 2010 и 2014 гг. общий объем поставок промышленных роботов увеличивался в среднем примерно на 40% за год, а в 2015 г. Китай продолжил демонстрировать высочайший рост, продажи достигли 66 000 единиц, а рынок вырос на 16%. Такое быстрое развитие является уникальным рекордом для истории робототехники. В самых различных отраслях Китая наблюдается всё большее инвестирование в автоматизацию производства.

В Японии в 2014 г. было продано 29 300 промышленных роботов, рынок вырос на 17%. С 2013 г. Япония стала вторым по величине рынком по размеру годовых продаж. Продажи роботов в Японии имели тенденцию к снижению с 2005 г., когда был пик продаж, который составил составлял 44 000 роботов, до 2009 г., когда продажи упали до 12 800 единиц. В период между 2010 и 2014 гг. продажи увеличивались в среднем на 8% за год.

Рынок промышленных роботов США , третий по величине в мире, в 2014 г. увеличился на 11%, достигнув пика в 26 200 единиц. Драйвер этого роста – тенденция к автоматизации производства с целью укрепления позиции? американской промышленности на мировом рынке и сохранения производства в домашнем регионе, а в некоторых случаях и с целью возращения производства из других регионов.

Продажи в Республике Корея в 2014 г. увеличились на 16%, до 24 700 единиц, немного не дотянув до рекорда 2011 г. – 26 536 единиц. Как и в 2013 г., существенно увеличились закупки промышленных роботов у поставщиков автомобильных компонентов (в частности, в производстве электрических компонентов, например, батареи? и т.п.), в то время как почти все другие отрасли в 2014 г. купили значительно меньше роботов. В течение 2010-2014 гг. годовой объем продаж роботов в Республике Корея был более или менее стабилен.

Германия является пятым по величине рынком промышленных роботов. В 2014 г. продажи роботов увеличились на 10%, до 20 100 единиц, что стало рекордом продаж. Поставки роботов в Германию увеличивались за 2010-2014 гг. в среднем на 9%, несмотря на существующую в стране высокую плотность роботов. Основным драйвером роста продаж в Германии была автомобильная промышленность.

С 2013 г. Тайвань занимает шестое место среди самых важных рынков промышленных роботов в мире по оценке годовых поставок в страну. Инсталляция робототехнических систем значительно увеличивалась между 2010-2014 гг. – в среднем на 20% в год. В 2014 г. объем продаж роботов увеличился на 27%, до 6 900 единиц. Тем не менее, количество установленных роботов в Тайване значительно ниже, чем в Германии, которая занимает пятое место с 20 100 единицами.

Италия является вторым по величине рынком промышленных роботов в Европе после Германии и занимает 7 место в общемировом рейтинге по поставкам промышленных роботов. Продажи в ней увеличились на 32% – до 6 200 единиц в 2014 г.. Начиная с 2001 г., это второй столь высокий уровень годовых продаж, что является явным признаком восстановления экономики Италии. В период между 2010 и 2013 гг. годовой объем продаж в Италии был довольно слабым в связи с кризисной ситуацией в стране.

Таиланд также является растущим рынком промышленных роботов в Азии, занимая 8 место в 2014 г. среди других рынков. Было установлено 3 700 роботов – лишь 2% от общего числа мировых поставок.

В Индию в 2014 году было продано около 2 100 промышленных роботов, что является новым пиком для страны. Поставки роботов в другие страны Южной Азии (Индонезия, Малайзия, Вьетнам, Сингапур и др.) увеличивались в 2014 г.: 10 140 единиц в 2014 г. по сравнению с 661 единицами в 2013 г..

Во Франции также восстановился рынок промышленных роботов – 3 000 единиц (+36%). В Испании продажи промышленных роботов снизились на 16%, до 2 300 единиц. После значительных инвестиции? между 2011 и 2013 гг. продажи в автомобильной промышленности заметно снизились, хотя другие отрасли продолжали увеличивать инвестирование в робототехнику. Продажи промышленных роботов в Великобритании снизились в 2014 г. до 2 100 единиц после значительных инвестиции? в автомобильную промышленность в 2011-2012 гг.

Спрос на промышленных роботов по отраслям

Основные «катализаторы» роста мировых продаж промышленных роботов – автомобильная промышленность и электрика/электроника.

С 2010 г. автомобильная промышленность – это самый важный клиент производителей промышленных роботов, значительно увеличивающий инвестирование в промышленных роботов по всему миру. В 2014 г. был зафиксирован новый пик продаж: на предприятиях было установлено около 98 000 новых роботов, что на 43% больше, чем в 2013 г.. Доля автомобильной промышленности от общего числа поставок промышленных роботов равняется примерно 43%. В период между 2010 и 2014 гг. продажи роботов в автомобильной промышленности возрастали за год в среднем на 27%. Инвестиции в новые производственные мощности на развивающихся рынках и инвестиции в модернизацию производства в основных странах, производящих автомобили, вызвали рост продаж робототехнических установок. В 2014 г. большая часть роботов была продана производителям элементов автомобильной электроники для производства аккумуляторов и других электронных деталей в автомобилях.

Продажи роботов для производства электрики и электроники (в том числе компьютеров, аппаратуры, радио, телевизоров, устройств связи и др.) значительно увеличились в 2014 г. и выросли на 34%, до 48 400 единиц. Доля от общего объема поставок – около 21%. Растущий спрос на электронику и новые продукты, а также необходимость автоматизировать производство, были движущими факторами для ускоряющегося спроса.

Продажи во всех отраслях промышленности, за исключением автомобилестроения и электроники/электрики, увеличились в 2014 г. на 21%. Между 2010 и 2014 гг., средний темп проста составил 17%. Темп роста продаж автомобильной промышленности в данный период равнялся 27%, а электрической/электронной промышленностей – 11%. Это явный признак того, что число продаж увеличилось не только в областях, которые являются основными потребителями промышленных роботов (автомобилестроение и производство электрики и электроники), но и в других отраслях промышленности. Поставщики роботов сообщают, что число клиентов в последние годы демонстрирует значительный рост. Хотя число заказанных клиентом роботов зачастую очень невелико.

Плотность роботизации

Во многих странах наблюдается высокий потенциал использования промышленных роботов. Сравнение в разных странах количественных показателей, например, общего числа единиц робототехники на рынке, может вводить в заблуждение. Для того чтобы учитывать различия в масштабах производящей промышленности, предпочтительно использовать показатель плотности роботизации. Эта плотность выражается в отношении количества многофункциональных роботов на 10 000 работников, задействованных в обрабатывающей, автомобильной промышленности или в промышленности в целом, которая включает в себя все промышленные отрасли за исключением автомобильного производства.

Приблизительная мировая плотность роботов равняется 66 установленным промышленным роботам на 10 000 работников сферы обрабатывающей промышленности (рис. 2). Производства с самым высоким уровнем роботизации – это производства в Республике Корея, Японии и Германии. За счет продолжения расширенной установки роботов на протяжении последних нескольких лет в 2014 г. Республика Корея была первой по уровню плотности роботов (478 промышленных роботов на 10 000 работников). Продолжает снижаться плотность роботов в Японии: в 2014 г. она достигла отметки в 314 единиц. В Германии наблюдается обратная динамика: плотность роботов выросла до 292 единиц. Соединенные Штаты Америки входят в пятерку крупнейших мировых рынков роботизированного производства: плотность в США в 2014 г. составила 164 единицы техники на 10 000 рабочих. Китай – самый большой рынок робототехники в мире с 2013 г. – достиг отметки в 36 единиц техники на 10 000 рабочих, что демонстрирует высокий потенциал для дальнейшей установки роботов в этой стране.

В 2014 г. плотность роботизации в обрабатывающей промышленности по регионам составила: 85 в Европе, 79 в Америке, 54 в Азии (рис. 3).

Плотность роботизации в автомобильной промышленности выше. Несмотря на общее сокращение показателей уровня плотности роботов, на данный момент в Японии самый высокий показатель по плотности использования робототехники в автомобильной промышленности (1 414 единиц техники установлено на 10 000 рабочих). Далее следуют Германия (1 149 единиц техники на 10 000 рабочих), Соединенные Штаты Америки (1 141 единиц техники на 10 000 рабочих) и Республика Корея (1 129 единиц техники на 10 000 рабочих).

С 2007 г. значительно возросла плотность робототехники в автомобильной промышленности в Китае (305 единиц техники), однако она все еще находится на среднем уровне. Причиной этому служит большое количество рабочих, задействованных в данной сфере. Согласно «Китайскому статистическому ежегоднику», на 2013 год в автомобильной промышленности работали около 3,4 млн. людей (включая производство автомобильных запчастей). В 2014 г. в Китае было произведено около 20 млн. автомобилей, что стало рекордом для страны и составило примерно 30% всех произведенных в мире автомобилей. Необходимая модернизация и дальнейший прирост мощностей значительно увеличат установку роботов в ближайшие годы: потенциал для установки робототехники на этом рынке по-прежнему огромен.

Россия

В России продажи роботов крайне низкие – около 500-600 роботов в год, плотность роботизации составляет около 2 роботов на 10 000 рабочих. Помимо действительно низкого уровня использования РТК в производстве, эти цифры также обусловлены сложностью получения данных о рынке, который разрознен и до недавнего времени целенаправленно не изучался. В 2015 г. была образована Национальная Ассоциация участников рынка робототехники (НАУРР), которая, помимо общих задач развития рынка, собирает статистику и создает аналитические материалы о рынке робототехники.

Общее число инсталлированных к 2015 г. промышленных роботов в Российской Федерации – около 2 740 шт. (рис. 4). С 2010 по 2013 год наблюдался стабильный рост продаж промышленных роботов – в среднем около 20% в год. В 2013 г. продажи достигли своего максимума – 615 роботов (увеличение на 34% по сравнению с 2012 г.), но в 2014 г. произошло резкое падение продаж на 56% – до приблизительно 340 роботов. Причиной этому является сильное изменение валютного курса.

Предварительные данные продаж 2015 г. – около 550 роботов. Лидерами российского рынка промышленной робототехники являются KUKA и FANUC, которые занимают около 90% рынка.

В России крайне мало отечественных производителей промышленных роботов. В 2015 г. закрылся Волжский машиностроительный завод, который долгое время был единственным производителем промышленных роботов в стране. В 2016 г. планируется запуск нового завода по производству промышленных роботов в Башкирии. Российские компании «Рекорд-Инжиниринг», «БИТ-Роботикс», «Эйдос-Робототехника» разрабатывают промышленных роботов, но объем их продаж пока неизвестен.

Помимо производителей промышленных роботов, важными игроками рынка являются системные интеграторы, которые встраивают робота в технологический процесс. Стоимость самого робота может составлять около 50% от цены решения, которое требует специализированной оснастки, настройки ПО, сервиса и т.д. В России существует около 50 компаний-интеграторов, которые отличаются по области специализации и своему размеру.

Одной из причин слабого уровня развития рынка промышленной робототехники является малая информированность предприятий о возможностях роботизации производственных процессов и связанных с этим сокращением издержек. Интеграторы почти не занимаются подсчетом реальной окупаемости РТК после установки, оставляя это на откуп предприятиям. Стимулировать развитие промышленной робототехники в стране можно через распространение систематизированной информации о реальной окупаемости РТК по отраслям и выполняемым операциям.

Для исследования различных барьеров развития робототехники (как промышленной, так и сервисной) Национальная Ассоциация участников рынка робототехники в декабре 2015 г. провела опрос российских робототехнических компаний. Ответы респондентов на вопрос об ограничениях, которые препятствуют развитию робототехники в РФ, о существующих рисках и барьерах на рынке робототехнике в целом, структурированы в таблице по группам «Образование и культура», «Технологии», «Экономика», «Государство», «Наука».

Таблица. Результаты опроса россии?ских робототехнических компаний о препятствиях развитию робототехники в стране
Группа Причины
Образование

и культура

  • Менталитет (в вопросах спроса на продукт и ведения бизнеса);
  • Низкая технологическая культура / устаревшая культура производства;
  • Низкий экспертный уровень / слабое профессиональное сообщество;
  • Малое количество узкоспециализированных специалистов;
  • Низкая квалификация в общей массе рабочего и инженерного состава предприятий для освоения робототехники;
  • Отсутствие высоких компетенций в области маркетинга у специалистов внутри РФ;
  • Слабая учебная инфраструктура;
  • Малое количество образовательных центров;
  • Медленное проникновение робототехники в учебные программы.
Технологии
  • Наличие готовых импортных решений;
  • Недостаток собственных технологий производства;
  • Отсутствие российской электронной базы, все современные комплектующие и технологии зарубежные;
  • Слабая инфраструктура;
  • Нехватка оборудования и ПО для проектирования;
  • Слабые аккумуляторы.
Экономика
  • Экономическая нестабильность;
  • Недостаток финансирования области;
  • Неправильное распределение бюджета предприятия;
  • Слабая заинтересованность, отсутствие заказчиков на внутреннем рынке;
  • Нет возможности выиграть конкурс на разработку – отсутствие гарантированного спроса;
  • Сложности с экспортом продукции с территории РФ;
  • Малый опыт работы в гражданской сфере;
  • Недоступность робототехники для обычных граждан в силу роста стоимости российских разработок по причине инфляции;
  • Отсутствие в РФ собственных международных корпораций, способных покупать стартапы и выводить их на мировой рынок;
  • Небольшой объем рынка венчурных инвестиций внутри РФ, ограничивающий скорость развития отечественных проектов по сравнению с аналогичными за рубежом (например, в США).
Государство
  • Бюрократия;
  • Отсутствие нормативно-правовой базы;
  • Устаревшие нормы качества;
  • Таможенная служба затрудняет и замедляет поставки и закупки комплектующих;
  • Недостаток государственной поддержки робототехники в целом;
  • Отсутствие реальной поддержки малых инновационных компаний со стороны государства;
  • Инертность и низкий старт реализации целевой программы развития госпредприятий с применением робототехники;
  • Ориентация на задачи служб специального назначения;
  • Объединение гражданских и военных разработок – нет органа, который бы решал вопросы по постановке робототехнических задач для нужд ВПК.
Наука
  • Отсутствие понятных и прозрачных механизмов финансирования исследований;
  • Отсутствие механизмов учета репутации, позволяющих оценивать успехи коллективов;
  • Проблемы с поставкой и закупкой комплектующих, что существенно тормозит разработки.

Преодоление существующих ограничений, конечно, невозможно мерами одного государства, для формирования стратегии развития отрасли необходим широкий диалог всех участников рынка.

Таким образом, мировой рынок робототехники показывает высокие темпы роста (около 8%). Мировыми лидерами в использовании РТК в промышленности являются Китай, Япония, Южная Корея, США и Германия. Россия же значительно отстает в роботизации производства по целому ряду причин, преодоление которых возможно только при коммуникации и консолидации участников рынка робототехники.

Эти устройства сегодня особенно востребованы в народном хозяйстве. Промышленный робот, мало похожий на свой прообраз в книге К. Чапека «Восстание роботов», - отнюдь не питает революционные идеи. Наоборот, он добросовестно выполняет, причем с большой точностью, как основные (сборку, сварку, окраску), так и вспомогательные (загрузку-выгрузку, фиксацию изделия при изготовлении, перемещение).

Применение таких «умных» машин способствует эффективному решению трех важнейших проблем производства:

  • - повышения производительности труда;
  • - улучшения условий труда людей;
  • - оптимизации использования человеческих ресурсов.

Промышленные роботы - детище крупного производства

Роботы на производстве массово распространились в конце XX века в связи со значительным ростом Крупные серии продукции обусловили потребность в интенсивности и качестве такой работы, выполнение которой превышает объективные человеческие возможности. Вместо того, чтобы задействовать многие тысячи квалифицированных рабочих, на современных технологичных заводах функционируют многочисленные высокоэффективные автоматические линии, работающие в режиме прерывного либо непрерывного циклов.

Лидерами в развитии подобных технологий, декларирующих широкое применение промышленных роботов, выступают Япония, США, Германия, Швеция и Швейцария. На две большие группы подразделяются изготовляемые в вышеперечисленных странах современные промышленные роботы. Виды их определяются принадлежностью к двум принципиально разным способам управления:

  • - автоматические манипуляторы;
  • - устройства, дистанционно управляемые человеком.

Для чего их используют?

О потребности в их создании начали говорить еще в начале XX века. Однако на то время еще не существовало элементной базы для осуществления задуманного. Сегодня, следуя велению времени, роботы-машины используются в большинстве наиболее технологичных производств.

К сожалению, переоснащение такими «умными» машинами целых отраслей промышленности затруднено дефицитом инвестиций. Хотя плюсы от их использования явно превышают первоначальные денежные затраты, ведь они позволяют говорить не только и не столько об автоматизации, сколько о глубоких изменениях в сфере производства и труда.

Применение промышленных роботов позволило эффективнее выполнять непосильные человеку по трудоемкости и точности работы: загрузку/разгрузку, укладку, сортировку, ориентацию деталей; перемещение заготовок от одного робота к другому, а готовых изделий - на склад; точечную сварку и сварку швов; сборку механических и электронных деталей; прокладывание кабеля; разрезание заготовок по сложному контуру.

Манипулятор как составляющая промышленного робота

Функционально состоит такая «умная» машина из перепрограммируемой САУ (системы автоматического управления) и рабочего тела (системы передвижения и механического манипулятора). Если САУ обычно достаточно компактна, визуально скрыта и не бросается сразу в глаза, то рабочее тело обладает настолько характерным видом, что промышленного робота часто называют следующим образом: «робот-манипулятор».

По определению, манипулятором называют устройство, осуществляющее перемещение в пространстве рабочих поверхностей и предметов труда. Эти приборы состоят из звеньев двух видов. Первые обеспечивают движение поступательного характера. Вторые - угловые перемещения. Такие стандартные звенья для своего движения используют либо пневматический, либо гидравлический (более мощный) привод.

Манипулятор, созданный по аналогии с человеческой рукой, для работы с деталями оснащен технологичным захватным устройством. В различных устройствах подобного типа непосредственно захват чаще всего осуществляли механические пальцы. При работе с плоскими поверхностями предметы захватывались с помощью механических присосок.

Если же манипулятор должен был работать одновременно со многими однотипными заготовками, то захват осуществлялся благодаря специальной обширной конструкции.

Вместо захватного устройства манипулятор часто оснащают мобильным сварочным оборудованием, особым технологичным пульверизатором или же просто отверткой.

Как робот перемещается

Автоматы-роботы обычно приспосабливают к двум видам перемещения в пространстве (хотя часть из них можно назвать стационарными). Это зависит от условий конкретного производства. Если необходимо обеспечить движение по гладкой поверхности, то его реализуют с помощью направленного монорельса. Если требуется работать на разных уровнях, используют «шагающие» системы с пневматическими присосками. Движущийся робот прекрасно ориентируется как в пространственных, так и в угловых координатах. Современные устройства позиционирования подобных устройств унифицированы, они состоят из технологических блоков и позволяют обеспечить высокоточное перемещение обрабатываемых деталей весом от 250 до 4000 кг.

Конструкция

Использование рассматриваемых автоматизированных машин именно на многопрофильных производствах обусловило некую унификацию их основных составляющих блоков. Современные промышленные роботы-манипуляторы имеют в своей конструкции:

  • -станину, используемую для крепления деталезахватывающего устройства (грейфера), - своеобразную «руку», собственно и выполняющую обработку;
  • -грейфер с направляющей (последняя определяет положение «руки» в пространстве);
  • -устройства обеспечения, приводящие, преобразовывающие и передающие энергию в виде вращающего момента на оси (благодаря им промышленный робот получает потенциал движения);
  • -систему контроля и управления выполнения возложенных на него программ; приема новых программ; анализа поступающих от датчиков информации, и, соответственно, передачи ее на обеспечивающие устройства;
  • -систему позиционирования рабочей части, измерения позиций и перемещений по осям манипуляции.

Заря создания индустриальных роботов

Вернемся в недалекое прошлое и вспомним, как начиналась история создания промышленных машин-автоматов. Первые роботы появились в США в 1962 г., и произведены они были компаниями «Юнимейшн Инкорпорэйтед» и «Версатран». Хотя, если быть точными, то раньше все-таки выпустили промышленного робота «Юнимейт», созданного американским инженером Д. Деволом, запатентовавшим собственную САУ, программируемую с помощью перфокарт. Это был очевидный технический прорыв: «умные» машины запоминали координаты точек своего маршрута и выполняли работу согласно программе.

Первый промышленный робот «Юнимейт» был оснащен двухпальцевым устройством для захвата на пневмоприводе и «рукой» на гидроприводе с пятью степенями свободы. Его характеристики позволяли перемещать 12-килограммовую деталь с точностью до 1,25 мм.

Другой робот-манипулятор «Версатран», созданный одноименной компанией, загружал и разгружал 1200 кирпичей в час в печь для обжига. Он успешно заменял труд людей во вредной для их здоровья среде с высокой температурой. Идея его создания оказалась весьма удачной, а конструкция - настолько надежной, что отдельные машины этой марки продолжают работать и в наше время. И это несмотря на то, что их ресурс превысил сотни тысяч часов.

Отметим, что устройство промышленных роботов первого поколения в стоимостном выражении предполагало 75% механики и 25% электроники. Переналадка таких приборов требовала времени и обуславливала простои оборудования. Для перепрофилирования их с целью выполнения новой работы производилась замена программы управления.

Второе поколение машин-роботов

Вскоре выяснилось: несмотря на все плюсы, машины первого поколения оказались несовершенными… Второе поколение предполагало более тонкое управление промышленными роботами - адаптивное. Самые первые устройства требовали упорядочения среды, в которой они работали. Последнее обстоятельство часто обозначало высокие дополнительные расходы. Это становилось критичным для развития массового производства.

Новый этап прогресса характеризовался разработкой множества датчиков. С их помощью робот получил качество, названное «очувствлением». Он стал получать информацию о внешней среде и, сообразуясь с ней, выбирать оптимальный вариант действий. Например, обрел навыки, позволяющие взять деталь и обойти с ней препятствие. Происходит такое действие благодаря микропроцессорной обработке полученной информации, которой далее, введенной в переменные управляющих программ, реально руководствуются роботы.

Виды основных производственных операций (сварка, покраска, сборка, различного рода также подлежат адаптации. То есть при выполнении каждой из них инициируется многовариантность для улучшения качества любого вида вышеперечисленных работ.

Управление промышленными манипуляторами в основном осуществляется программно. Аппаратным обеспечением управляющей функции служат промышленные мини-компьютеры PC/104 или MicroPC. Заметим, что адаптивное управление основано на многовариантном программном обеспечении. Причем решение о выборе типа работы программы принимается роботом на основании информации о среде, описанной детекторами.

Характерной чертой функционирования робота второго поколения является предварительное наличие установленных режимов работы, каждый из которых активируется при определенных показателях, полученных из внешней среды.

Третье поколение роботов

Автоматы-роботы третьего поколения способны самостоятельно генерировать программу своих действий в зависимости от поставленной задачи и обстоятельств внешней среды. У них нет «шпаргалок», т. е. расписанных технологичных действий при определенных вариантах внешней среды. Они обладают умением самостоятельно оптимально выстраивать алгоритм своей работы, а также оперативно реализовывать его практически. Стоимость электроники такого промышленного робота в десятки раз выше его механической части.

Новейший робот, осуществляя захват детали благодаря сенсорам, «знает», насколько удачно он это сделал. Кроме того, регулируется сама сила захвата (обратная связь по усилию) в зависимости от хрупкости материала детали. Возможно, именно поэтому устройство промышленных роботов нового поколения называют интеллектуальным.

Как вы понимаете, «мозгом» такого прибора является система его управления. Наиболее перспективным является регулирование, осуществляемое согласно методам искусственного интеллекта.

Интеллект этим машинам задают пакеты программируемые логические контроллеры, инструменты моделирования. На производстве промышленные роботы объединяются в сеть, обеспечивая должный уровень взаимодействия системы «человек - машина». Также разработаны инструменты прогнозирования функционирования таких приборов в будущем благодаря реализованному программному моделированию, что позволяет выбирать оптимальные варианты действия и конфигурации подключения в сеть.

Ведущие мировые компании, производящие роботов

Сегодня применение промышленных роботов обеспечивается ведущими компаниями, среди которых японские (Fanuc, Kawasaki, Motoman, OTC Daihen, Panasonic), американские (KC Robots, Triton Manufacturing, Kaman Corporation), немецкая (Kuka).

Чем известны в мире эти фирмы? В активе Fanuc - наиболее быстрый на сегодняшний день дельта-робот M-1iA (такие машины используются обычно при упаковке), самый сильный из роботов-серийников - M-2000iA, признанные во всем мире роботы-сварщики ArcMate.

Не менее востребованы промышленные роботы на производстве, выпущенные компанией Kuka. Эти машины с немецкой точностью осуществляют обработку, сварку, сборку, упаковку, паллетизацию, погрузку.

Также внушителен модельный ряд японско-американской компании Motoman (Yaskawa), работающей на американский рынок: 175 моделей промышленных роботов, а также более 40 интегрированных решений. Промышленные роботы, на производстве используемые в США, в большинстве своем изготовлены именно этой ведущей в своей отрасли компанией.

Большинство других представленных нами фирм занимают свою нишу путем изготовления более узкого ассортимента специализированных приборов. Например, Daihen и Panasonic выпускают сварочных роботов.

Способы организации автоматизированного производства

Если говорить об организации автоматизированного производства, то вначале был реализован жесткий линейный принцип. Однако он при достаточно высокой скорости имеет существенный недостаток - простои из-за сбоев. В качестве альтернативы была изобретена роторная технология. При такой организации производства по кругу движется и обрабатываемая деталь, и сама автоматизированная линия (роботы). Машины в таком случае могут дублировать функции, и сбои при этом практически исключены. Однако в этом случае теряется скорость. Идеальный вариант организации процесса - гибрид двух вышеупомянутых. Называется он роторно-конвейерным.

Промышленный робот как элемент гибкого автоматического производства

Современные «умные» устройства быстро перенастраиваются, высокопродуктивно и самостоятельно выполняют работы с помощью своей оснастки, обрабатывая материалы и заготовки. В зависимости от специфики использования они могут функционировать как в рамках одной программы, так и варьируя свою работу, т. е. выбирая из фиксированного количества предоставленных программ нужную.

Промышленный робот является составляющим элементом гибкого автоматизированного производства (общепринятое сокращение - ГАП). В последнее также входят:

  • -система, осуществляющая автоматизированное проектирование;
  • -комплекс автоматизированного управления технологическим оснащением производства;
  • -промышленные роботы-манипуляторы;
  • -автоматически работающий производственный транспорт;
  • -устройства, осуществляющие загрузку/выгрузку и размещение;
  • -системы контроля над производственными технологическими процессами;
  • -автоматическое управление производством.

Подробнее о практике применения роботов

Настоящими промышленными приложениями являются современные роботы. Виды их различны, и они обеспечивают высокую производительность стратегически важных сфер промышленности. В частности, во многом экономика современной Германии обязана своим растущим потенциалом их применению. В каких отраслях трудятся эти «железные работники»? В металлообработке они функционируют практически во всех процессах: литье, сварке, ковке, обеспечивая высочайший уровень качества работы.

Литье как отрасль с экстремальными условиями для человеческого труда (имеются в виду высокие температуры и загрязнение) в значительной мере роботизировано. Машины от Kuka монтируют даже в литейных цехах.

Пищевая промышленность также получила от Kuka оборудование для производственных целей. «Пищевые роботы» (фото представлены в статье) в большинстве своем замещают людей на участках с особыми условиями. Распространены на производствах машины, обеспечивающие в нагревающихся помещениях микроклимат с температурой, не превышающей 30 градусов по Цельсию. Роботы из нержавеющей стали виртуозно обрабатывают мясо, участвуют в производстве молочных продуктов, а также, конечно, укладывают и упаковывают продукты оптимальным образом.

Трудно переоценить вклад таких приборов в автомобилестроительную промышленность. По признанию специалистов, самыми мощными и производительными машинами на сегодняшний день являются именно «куковские» роботы. Фото таких устройств, осуществляющих весь спектр автосборочных операций, впечатляют. При этом действительно пора говорить об автоматизированном производстве.

Обработку пластмасс, выпуск пластика, изготовление сложнейших по форме деталей из разнообразных материалов обеспечивают роботы на производстве в действительно вредной для здоровья человека загрязненной среде.

Еще одной важнейшей сферой применения «куковских» агрегатов является деревообработка. Причем описываемые устройства обеспечивают как выполнение индивидуальных заказов, так и налаживание крупного серийного производства на всех стадиях - от первичной обработки и распиловки до фрезеровки, сверления, шлифовки.

Цены

В настоящее время на рынке России и стран СНГ востребованы произведенные компаниями Kuka и Fanuc роботы. Цены их колеблются в пределах от 25 000 до 800 000 руб. Такая внушительная разбежка объясняется существованием различных моделей: стандартных малой грузоподъемности (5-15 кг), специальных (решающих особенные задачи), специализированных (работающих в нестандартной окружающей среде), большой грузоподъемности (до 4000 т).

Выводы

Следует признать, что потенциал использования промышленных роботов все еще не задействуется в полной мере. При этом стараниями специалистов современные технологии позволяют реализовывать все более смелые идеи.

Потребности в увеличении производительности мирового хозяйства и максимизация доли интеллектуального человеческого труда служат мощными стимулами развития все новых и новых типов и модификаций промышленных роботов.

Россия по темпам роботизации заметно отстает от других стран и от показателей «в среднем по миру». Большинство промышленных роботов мы вынуждены закупать за рубежом, и процесс этот идет медленно. Но надежда есть: в России появляются собственные производства, а цифры роботизации растут.

«Робохантер» уже обзор топовых компаний, выпускающих промышленных роботов. Теперь мы подготовили для вас обзор российских производителей.

Промышленные роботы в России и в мире: статистика

Среднегодовые продажи в России составляют 600 шт.; в среднем в мире - 240 000. В России на 2017 год насчитывалось 8000 таких роботов; в мире - 1,6 млн.

Плотность в России в 70 раз меньше, чем в среднем в мире. А вот как выглядит плотность роботизации с учетом разброса по странам (данные указаны по числу роботов на 10 000 работников предприятий):

Большинство российских промышленных роботов - порядка 40% - заняты в автомобилестроении. Это в целом соответствует ситуации в мире, где занято 38% роботов.

О том, как наша страна движется к роботизации и почему ее темпы не такие быстрые, как хотелось бы, в своем недавнем интервью рассказал Виталий Недельский, президент Национальной ассоциации участников рынка робототехники (НАУРР) . По его словам, Россия закупает мало промышленных роботов и не имеет их собственного производства. Они плохо востребованы в отечественной промышленности, и на это есть ряд причин:

    Слабая информированность технического менеджмента.

    Трудности перехода (необходимость перестраивать рабочие процессы).

    Часть крупных предприятий - в государственных руках, это дает большую инерцию.

    В России мало технически развитых промышленных предприятий.

    Низкая стоимость рабочей силы, что делает робота менее рентабельным.

Разумеется, рано или поздно Россия , убежден Виталий. Для этого есть экономические причины: труд становится дороже; роботехнологии - дешевле, а молодежь уходит из промышленной отрасли. Динамика уже видна: с 2005 по 2015 г. продажи промышленных роботов в России ежегодно росли в среднем на 27%. Мощным драйвером роста роботизации может стать господдержка.

«Во многих странах есть масштабные программы поддержки робототехники как отрасли - в Китае, Франции, США, Германии, Южной Корее, - говорит Виталий Недельский. - Это и гранты, и инвестиции, и налоговые льготы, и подготовка кадров, и инкубаторы-технопарки. Мы пока к этому не пришли. Но в 2018-2019 году программы поддержки начнут появляться. К примеру, в Минпромторге разработана программа “Развитие средств производства”, туда входят аддитивные технологии, цифровой инжиниринг, робототехника».

По словам Виталия Недельского, в России сегодня сделан упор на сервисную робототехнику (это роботы без манипулятора - такие как роботизированные тележки или умные сельскохозяйственные машины). Только в «Сколково» есть около 50 таких стартапов. Суммарно же в России 220 компаний, занятых в сфере роботизации, но по большей части это интеграторы и производители компонентов.

Роботизированная тележка RoboCV X-MOTION NG российской компании RoboCV

Производство промышленных роботов в России

Казань: ARKODIM

ООО «Торговый дом «АРКОДИМ» имеет две производственных базы, расположенные в Казани и Новосибирске. Производство промышленных роботов компания ведет с 2014 года (именно тогда, после исследования рынка, появились первые планы производства). Первый экспериментальный образец робота-манипулятора появился в 2015 году, а с 2016-го компания поставляет промышленных роботов на производства заказчиков.

Это серия промышленных роботов - манипуляторов консольного типа с тремя, пятью и семью осями. Компания выпускает модели с разными габаритами, разным классом точности и с разной скоростью передвижения. У них широкий диапазон нагрузок (от 2 до 60 кг) и много функциональных возможностей. Разработчик производит не только типовые модели, но и индивидуальные, по техзаданию заказчика. Популярные модификации ARKODIM - робот-сварщик, манипулятор для термопластавтомата, паллетайзер. Подробнее о продукции компании читайте в замглавы ARKODIM Артёма Барахтина.

Новосибирск: «АвангардПЛАСТ»

Партнер компании «АРКОДИМ» и производитель роботов-манипуляторов под собственным брендом GRINIK. Группа компаний «АвангардПЛАСТ» осуществляет разработку, производство и внедрение промышленных роботов. В качестве ключевых преимуществ своих продуктов компания называет простоту управления и быструю настройку параметров.

Компания производит роботы-манипуляторы для работы с литьевыми машинами (термопластавтоматами, или ТПА, с различной максимальной нагрузкой и разной величиной хода по осям).

Роботы-манипуляторы GRINIK изготавливаются серийно, но по заказу клиента проектируются индивидуальные модели.

Москва: «БИТ Роботикс»

Компания «БИТ Роботикс» - разработчик роботизированного оборудования, ведущий собственные исследования в разных областях робототехники, включая сервосистемы и техническое зрение. Большинство инженеров пришли в компанию из космической и авиационной отрасли.

«БИТ Роботикс» - создатель первого российского промышленного дельта-робота. Это конструкция из трех рычагов, прикрепленных посредством карданных шарниров к основанию, которое находится над рабочей зоной. Такие роботы широко применяются в пищевой, фармацевтической и упаковочной промышленности; они развивают высокую скорость, за счет чего рентабельность производства заметно повышается.

Сегодня «БИТ Роботикс» - единственный в России разработчик и производитель дельта-роботов высокой производительности. Скорость робота «БИТ Роботикс» - до 5 м/c, обычное ускорение - до 50 м/c2, максимальное ускорение - до 150 м/c2.

Екатеринбург, «Рекорд-Инжиниринг»

Предприятие проектирует и производит промышленные манипуляторы, грузохватные и грузоподъемные приспособления. Также компания занимается и менее сложным оборудованием: выпускает транспортеры, моечные станции, а также разрабатывает нестандартное промышленное оборудование на заказ. На рынок «Рекорд-Инжиниринг» вышла в 2007 году.

По словам представителей компании, она производит аналоги популярных зарубежных промышленных манипуляторов, в том числе роботизированных. Они не уступают прототипам в качестве и при этом выгоднее по цене.

«Рекорд-Инжиниринг» производит несколько типов манипуляторов: колонна, пантограф, консольный и для тяжелых изделий. Манипуляторы от «Рекорд-Инжиниринг» обладают разной грузоподъемностью и конфигурацией, поскольку каждый из них проектируется под конкретные перемещаемые изделия.

Казань: Eidos Robotics

Eidos Robotics («Эйдос-Робототехника») - резидент Инновационного центра «Сколково» и участник Камского инновационного территориально-производственного кластера Республики Татарстан. Компания основана в 2012 году и сфокусирована на разработках в области компьютерного зрения, адаптивного управления роботами и коллаборативной робототехники.

Промышленные роботы от Eidos Robotics - это манипуляторы серии Hexapod. Они обладают шестью степенями свободы, не требуют специальной подготовки основания и могут применяться для решения широкого класса задач. Совместимы с компьютерным зрением. Электроприводные элементы робота находятся в верхней части и легко изолируются.

Роботов Hexapod можно использовать для широкого спектра задач. В том числе - в работе с меняющимися деталями и для манипуляций со взрывоопасными веществами.

Тольятти: Волжский машиностроительный завод

Предприятие «Волжский машиностроительный завод» (ранее Производство технологического оборудования и оснастки ОАО «АВТОВАЗ») выпускало промышленных роботов до 2016 года. Направление ликвидировали из-за низкой рентабельности. Но за годы своего существования компания стала самым известным российским производителем промышленных роботов, а ее продукты все еще используются на российских предприятиях.

В числе разработок Волжского машиностроительного завода - несколько моделей универсальных промышленных роботов с угловой система координат и шестью степенями подвижности.

    ПР 125/150/200. Возможные варианты применения: контактная, дуговая, лазерная сварка, нанесение клеев и герметиков, складирование и транспортирование грузов, лазерная и плазменная резка.

    ПР 350. Применяется для контактной сварки, складирования и транспортирования грузов.

    TUR 150. Применяется для контактной, дуговой и лазерной сварки, нанесения клеев и герметиков, складирования и транспортировки грузов, лазерной и плазменной резки. Есть возможность выполнения различных операций со сменным инструментом в автоматическом режиме.