Учебно-методический материал по географии (8 класс) на тему: Практическая работа Выявление условий почвообразования основных земельных типов почв (количество тепла и влаги, рельеф, характер растительности) и оценка их плодородия. Знакомство с образцами по

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ

УНИВЕРСИТЕТ

Кафедра почвоведения

КУРСОВАЯ РАБОТА

Условия почвообразования, характеристика основных

Типов почв хозяйства

Сппк "Мичуринский" Изобильненского

Района и их качественная оценка

ВЫПОНИЛ: студент

1курса группы 10/15

Волошенко Владимир

ПРОВЕРИЛ: Цховребов В.С

Ставрополь, 2016

Введение 3

1. Общие сведения о хозяйстве. 5

2. Факторы почвообразования. 7

2.1 Климат 7

2.2 Рельеф. 11

2.3 Растительность. 11

2.4 Почвообразующие породы. 14

2.5 Гидрологические особенности. 16

3.Почвенный покров. 19

3.1 Почвенная карта. 19

3.2.Морфологическая характеристика почвенного профиля. 20

3.3 Гранулометрический и минералогический состав. 21

3.4.Физические свойства почвы. 23

3.5.Физико-химические свойства почвы. 24

4.Агрохимическая характеристика почв хозяйства. 26

4.1. Обеспеченность почвы азотом. 26

4.2. Обеспеченность почвы фосфором. 27

4.3. Обеспеченность почв калием. 29

4.5.Солевой состав почв. 33

5. Бонитировка и кадастровая оценка почв. 34

Пути повышения эффективности плодородия. 38

Список литературы. 39

Введение

В настоящее время перед сельскохозяйственным производством края стоит основная задача - обеспечить дальнейший рост и большую устойчивость производства сырья для промышленности. Выполнение этой задачи должно идти на основе сохранения и повышения плодородия почв. Плодородие почвы способно реально повысить производительную силу земли.

Опыт людей нашего сельского хозяйства показывает, что при рациональном использовании земли плодородие почвы возрастает.

Важным этапом в развитии биосферы явилось возникновение такой ее части, как почвенный покров. С образованием развитого почвенного покрова биосфера - становится целостной системой, все части ко­торой взаимосвязаны и зависят друг от друга.

Контроль за состоянием почв и почвенного покрова – обязательное условие получения планируемой продукции сельского и лесного хозяйства.

Почва была и остается главным условием жизнеобеспечения людей. Сохранение почвенного покрова, а, следовательно, и основных жизненных ресурсов в условиях развития промышленности, бурного роста городов и транспорта возможно только при хорошо налаженном контроле за использованием всех видов почвенных и земельных ресурсов.

Чтобы правильно извлекать пользу почвы, надо знать, как она образовывалась, ее строение состав и свойства

Почва содержит микроэлементы (азот, фосфор, калий, кальций, сера, железо и др.) и микроэлементы (бор, марганец, молибден, цинк и др.), которые растения потребляют в ограниченных количествах. Их соотношение определяет химический состав почвы.

Из физических свойств почвы наибольшее значение имеет влагоемкость, водопроницаемость.

Состав и свойства почвы постоянно меняются под влиянием климата, деятельности человека. При внесении удобрений почва обогащается питательными для растений веществами, изменяет свои физические свойства.

выявление условий почвообразования основный типовых почв (колличкство тепла, влаги, рельеф, растительность) Оценка их плодородия. Объясните, от чего зависит плодородие почв. Назовите самые плодородные почвы россии, объясните географию их распространения. Какие процессы почвооразования происходят в условиях избыточного, достаточного и недостаточного увлажнения? Дайте оценку основных типов почв нашей страны. Укажите, какие их них наиболее благоприятны для сельского хозяйства, на каких в основном размещены леса? Какие виды деятельности человека приводят к нарушению естественного плодородия почвы? Как можно улучшить почвы? Какие типы почв распространены в Ульяновской области, как они используются человеком, какие мероприятия проводятся по улучшению почвы?

Похожие вопросы

  • сочинение 3класс про 1сентябрь
  • разобрать по составу слова: закрывающая поселяются
  • Подберите и запишите односложные слова с гласными а,о,и,э,ы,у.Обозначьте в них гласные звуки.Чем еще различаются эти слова,кроме звукового состава?
  • На машину погрузили 106 кг сухофруктов яблоки и курагу. Из них 54 кг составляли яблоки в шести одинаковых коробках.В других четырёх одинаковых коробках была курага.На сколько одна коробка с курагой тяжелее одной коробке с яб...

Задачи:

Выявить условия почвообразования различных типов почв,

Установить влияние каждого из почвообразующих факторов для формирования почвы,

Научиться различать типы почв,

Определить важность данного вида ресурса для развития народного хозяйства.
Задание 1. Используя атлас, опишите, как изменяется типологический состав почв по территории Восточно-Европейской равнины с севера на юг .
__________________________________________________________________________________________________________________________________________________________________________
Задание 2. Используя дополнительный материал, опишите, как влияют на почвообразование климат и влажность. Почему плодородие почв возрастает в южном направлении вплоть до Кавказских гор, побережья Черного и Азовского морей, а при движении к побережью Каспийского моря плодородие уменьшается?
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Задание 3. На основании профилей различных типов почв составьте сравнительную характеристику почв тундры, смешанных лесов, степи. Объясните, в чем причина различий между этими типами почв, какие из них наиболее плодородны и почему.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Задание 4. Используя карты атласа, определите, какие типы почв характерны для нашей области.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Задание 5. Используя карты атласа и дополнительный материал, определите, какие типы почв являются наиболее плодородными (плодородие определяется по количеству гумуса). В какой части страны они размещаются ? Используя данные о размещении наиболее плодородных почв, определите, почему большая часть населения России расселилась вдоль южной границы страны?
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Дополнительный материал
Направленность и интенсивность почвообразовательных процессов, а, следовательно, и типы почв зависят от энергетических ресурсов (затрат тепла на почвообразование), водного режима почв, поступления органики в почву и скорости ее разложения, количества микроорганизмов, участвующих в процессах почвообразования. Все эти характеристики в той или иной степени зависят от климата, поэтому все они в самых общих чертах обнаруживают зональность.

В северной части страны развитие почвообразовательных процессов лимитируется прежде всего энергетическими ресурсами. Нарастание тепла при движении с севера на юг влечет за собой увеличение органики, поступающей с ежегодным спадом в почву , и количества микроорганизмов, участвующих в ее переработке, поэтому возрастает интенсивность почвообразовательных процессов и количество гумуса в почвах. Оптимальные условия для почвообразования создаются в полосе нейтрального баланса тепла и влаги, поэтому здесь формируются самые плодородные, богатые гумусом почвы - черноземы.

При дальнейшем продвижении к югу процессы почвообразования уже лимитируются недостатком влаги. Именно с этим связано уменьшение прироста биомассы и, как следствие, все меньшее поступление органики, а отсюда и сокращение количества микроорганизмов, питательной средой для которых служит органическое вещество. Сокращается и суммарная затрата энергетических ресурсов на почвообразовательные процессы, так как основная их часть (до 95%) расходуется на испарение почвенной влаги, а влаги в почвах при продвижении к югу становится все меньше и меньше. Уменьшение количества влаги при возрастании температур обусловливает небольшую глубину промачивания грунта и, следовательно, малую мощность почвенного профиля.

Наиболее важное свойство, которое человек ценит в почвах и стремится использовать , - плодородие, т. е. способность почвы создавать урожай растений. Плодородие обусловлено наличием в почвах органического вещества - гумуса, или перегноя. Благодаря плодородию, почвы являются величайшим природным богатством.

Самыми плодородными почвами являются черноземы, формирующиеся в оптимальных условиях для гумусонакопления. Именно в этих почвах запасы гумуса в метровом слое почвы особенно велики. В типичных черноземах они достигают 709 ц/га. В выщелоченных черноземах запасы гумуса уменьшаются (512 ц/га), еще заметнее они снижаются в серых лесных почвах (215 ц/га), а в подзолистых не достигают и 100 ц/га. Таким образом, к северу запасы гумуса уменьшаются, снижается и плодородие почв вследствие возрастания их выщелоченности и увеличения заболоченности, т. е. переувлажнения.

К югу от типичных черноземов запасы гумуса также уменьшаются: в черноземах обыкновенных они составляют 426 ц/га, в южных - 391 ц/га, темно-каштановых - 229 ц/га. В светло-каштановых почвах запасы гумуса сокращаются до 116 ц/га, в бурых пустынно-степных - до 62 ц/га. Снижение плодородия почв в сухих степях и полупустынях обусловлено не только уменьшением запасов гумуса, но и засолением почв.

С запасами гумуса тесно связана естественная продуктивность почв, которая может быть выражена величиной годового прироста биомассы на единицу площади. На подзолистых и дерновоподзолистых почвах биомасса составляет 45-85 ц/га, на черноземах - 90-137 ц/га, на каштановых снижается до 40 ц/га. Естественно, что обладающие высоким плодородием черноземы уже давно распаханы. Ныне свыше 50% пашни России размещено на черноземах. Около 15% пашни приходится на серые и бурые лесные почвы и примерно столько же - на дерново-подзолистые и подзолистые. Чуть более 10% пашни приурочено к каштановым, главным образом, темно-каштановым почвам.

Практическая работа №11

8 класс Практическая работа № 10

Скачать:


Предварительный просмотр:

Практическая работа № 10

Выявление условий почвообразования основных земельных типов почв (количество тепла и влаги,

Рельеф, характер растительности) и оценка их плодородия. Знакомство с образцами почв своей местности

Цель: Характеристика типов почв России и Белгородской области, особенности их использования человеком.

Оборудование : Почвенные карты России и Белгородской области

Ход работы:

Задание 1. Определить условия почвообразования основных земельных типов почв России и их плодородия.

Природная зона

Тип почв

Гумус

Свойства почв

Условия почвообразования

1. Арктическая пустыня

2. Тундра

3. Лесная зона

А) тайга

Б) тайга Восточной Сибири

В) смешанные леса

Г) широколиственные леса

4. Степи

5.Полупустыни

Задание 2. Используя карты Белгородской области, дайте характеристику почв области. Заполните таблицу.

Тип почвы

Занимаемая площадь

Свойства почвы

гумуса

Черноземы оподзоленные

Черноземы выщелоченные

Мощность гумусового горизонта - ________ см, содержание гумуса - ________%

Черноземы типичные

Мощность гумусового горизонта - ________ см, содержание гумуса - ________%

Черноземы обыкновенные

Мощность гумусового горизонта - ________ см, содержание гумуса - ________%

Мощность гумусового горизонта - ________ см, содержание гумуса - ________%

Мощность гумусового горизонта - ________ см, содержание гумуса - ________%

Природная зона

Тип почв

Гумус

Свойства почв

Условия почвообразования

1. Арктическая пустыня

Часто отсутствуют или арктическая

Крайне мало

Не плодородная

Мало тепла и растительности.

2. Тундра

Тундрово-глеевые

Мало

Маломощные, имеют глеевый слой.

Многолетняя мерзлота, мало тепла, переувлажнение, недостаток кислорода

3. Лесная зона

А) тайга

подзолистые

Мало

1-2%

Промывные кислые

К увл. > 1, растительные остатки – хвоя.

Б) тайга Восточной Сибири

Мерзлотно-таежные

Мало

Малоплодородные холодные

Вечная мерзлота.

В) смешанные леса

Дерново-подзолистые

Гумуса больше, чем подзолистых

Более плодородные

Промыв весной, больше растительных остатков.

Г) широколиственные леса

Серые лесные

4-5 % гумуса

4. Степи

Черноземы, каштановые почвы.

10-12%

Самые плодородные, зернистая структура.

К увл.+ 1, много растительных остатков ежегодно, много тепла.

5.Полупустыни

Бурые полупустынь и серо-бурые.

Гумуса меньше

Засоление почв

Сухой климат, разреженный растительный покров.

К увл

Почвы Белгородской области

Необходимым условием всякого природного процесса, в том числе и почвообразования, является время. Почвы Белгородской области сравнительно молодые: их возраст исчисляется 5-10 тысячами лет. В то же время этот возраст достаточен для полного формирования черноземной почвы.

Белгородская область занимает возвышенную равнину, приподнятую в северной части. По этой причине на водораздельных пространствах грунтовые воды залегают глубоко и не влияют на формирование почв, что также способствует формированию черноземных почв, а не каких-либо луговых или болотных. В то же время характер рельефа способствует развитию эрозионных процессов, ведущих к образованию оврагов и балок.

Таким образом, все факторы почвообразования в Белгородской области направлены на формирование плодородных почв. Ведущим почвообразовательным процессом является гумуса-аккумулятивный.

Основными свойствами черноземов являются: богатство гумусом и элементами питания растений (М, Р, 5, микроэлементы*, отсутствие в почве легкорастворимых солей и наличие в профиле карбонатов; благоприятные физические свойства (рыхлое сложение, хорошая структура и хорошая водопроницаемость).

Все черноземы подразделяют на черноземы лесостепи и черноземы степи. К первой группе относят черноземы оподзоленные, выщелоченные и типичные; ко второй - обыкновенные и южные. В Белгородской области встречаются все указанные подтипы черноземов, за исключением южных. Профиль чернозема имеет три горизонта: гумусовый (А), переходный (В) и материнская порода (С).

Черноземы оподзоленные занимают 2,4% площади области. Их профиль характеризуется наличием белесой присыпки в нижней части гумусового слоя, переходный горизонт несет черты горизонта вмывания. Средняя мощность гумусового горизонта составляет 63-67 см, содержание гумуса - от 3 до 7%. Запасы гумуса в метровой толще 355-420 т/га. Реакция почвы в верхнем горизонте близка к нейтральной.

Выщелоченные черноземы занимают 23,2% территории. Внешне они похожи на черноземы типичные, но в нижней части горизонта вмывания выражены карбонатные выделения в виде белых вкраплений или прожилок. Средняя мощность гумусового горизонта от л (65 до 86 см; содержание гумуса достигает 4,5-6,5%, а запасы гумуса в метровой толще - 500 т/га. Реакция почвы в верхнем горизонте близка к нейтральной.

Черноземы типичные лидируют в Белгородской области по распространению - 36,1%. Они отличаются от выщелоченных наличием карбонатов во всем горизонте вмывания. Средняя мощность гумусового горизонта - от 73 до 87 см, содержание гумуса - 5,5-7,0% и запасы гумуса 420-530 т/га. Реакция почвы в верхнем горизонте нейтральная.

Черноземы обыкновенные занимают 11,8% площади и отличаются от типичных появлением карбонатов в гумусовом горизонте. Часто карбонатные выделения представлены конкрециями, которые называют белоглазкой. У обыкновенных черноземов сокращается мощность гумусового горизонта (от 56 до 66 см). Среднее содержание гумуса равно 4,8-6,9%, а его запасы в метровой толще 310-433 т/га. Реакция почвы с поверхности слабощелочная.

На выходах меловых пород развиваются черноземы остаточно- карбонатные. Для них характерно наличие щебенки мела по всему профилю и его укороченность. Средняя мощность гумусового горизонта всего лишь 13-55 см; среднее содержание гумуса - от 2,2 до 6,3%, запасы гумуса в метровой толще 300-350 т/га. Реакция среды по всему профилю щелочная.

Таким образом, среди почв Белгородской области наибольшими запасами гумуса обладают типичные и выщелоченные черноземы. Значительно ниже эти запасы в оподзоленных и обыкновенных черноземах, но самые низкие - в остаточно-карбонатных черноземах. Оценка всех показателей плодородия почв показывает, что самой плодородной почвой в Белгородской области является чернозем выщелоченный.

Под лесной растительностью в области развивались серые лесные почвы, представленные двумя подтипами - серыми лесными (3,9% площади) и темно-серыми лесными (10,7% площади). Профиль темно-серой лесной почвы состоит из лесной подстилки (АО), гумусового горизонта (А1), горизонта вмывания с пятнами горизонта вымывания (А2В), горизонта вмывания (В) и материнской породы (С). Мощность гумусового горизонта достигает 50-60 см, содержание гумуса - от 3 до 5%, запасы его в метровой толще доставляют 300-340 т/га. Реакция почвы слабокислая. В этих почвах на гумуса-аккумулятивный процесс наложился процесс оподзоливания, ведущий к формированию горизонта вымывания (А2).

Лугово-черноземные и черноземно-луговые почвы (1,3%), развиваются на террасах и в поймах рек, где на процесс почвообразования влияют грунтовые воды. Внешне они похожи на черноземы, но отличаются повышенным содержанием гумуса и наличием признаков переувлажнения в горизонте вмывания (В) или в породе (С). К таким признакам относят наличие ржавых и сизых пятен, которые обусловлены процессом оглеения. Лугово-черноземные почвы характеризуются глубоким проникновением гумуса по профилю. В горизонтах А и АВ гумус с глубиной уменьшается постепенно, а на глубине 70-80 см (или 80-90 - у мощных видов) наблюдается довольно заметное снижение содержания гумуса. Мощность гумусовых горизонтов в основном составляет 60-80 см, а содержание гумуса в горизонте А колеблется от 7 до 10%, снижаясь в горизонте АВ до 3-5%.

При усилении условий увлажнения в поймах рек развиваются пойменные луговые или пойменные лугово-болотные почвы, последние имеют в своем профиле прослои торфа.

Песчаных почв на территории области мало. Так как пески и супеси бесструктурны, бедны элементами питания, то и образовавшиеся на них почвы не являются ценными в агрономическом отношении.

На днищах балок представлены дерново-намытые почвы. Сюда периодически поступает гумусированный материал со склонов балок, что приводит либо к появлению погребенных гумусовых горизонтов, либо к аномально большой мощности гумусового горизонта (свыше 2 метров).

Тип почвы

Занимаемая площадь

Свойства почвы

гумуса

Черноземы оподзоленные

2,4%

Самые плодородные

Мощность гумусового горизонта составляет 63-67 см, содержание гумуса - от 3 до 7%.

Черноземы выщелоченные

23,2%

Самые плодородные

Мощность гумусового горизонта от 65 до 86 см, содержание гумуса 4,5-6,5%,

Черноземы типичные

36,1%.

Самые плодородные

Мощность гумусового горизонта - от 73 до 87 см, содержание гумуса - 5,5-7,0%

Черноземы обыкновенные

11,8%

Самые плодородные

Мощность гумусового горизонта от 56 до 66 см. Среднее содержание гумуса равно 4,8-6,9%

Серые лесные и темно-серыми лесными

3,9% и 10,7%

Плодородные

Мощность гумусового горизонта достигает 50-60 см, содержание гумуса - от 3 до 5%

Лугово-черноземные и черноземно-луговые почвы

1,3%

Плодородные

Мощность гумусовых горизонтов составляет 60-80 см, содержание гумуса колеблется от 7 до 10%


· Общие сведения

Резонанс токов может возникнуть в цепи синусоидального тока при параллельном соединении ветвей с индуктивным L и емкостном Сэлементами.

При этом дополнительный резистивный элемент R может быть включен в цепь также параллельно, или последовательно, или вовсе отсутствовать. В данной работе исследуется резонанс токов в цепи с параллельным соединением R ,L ,C –элементов, как показано на схеме замещения рис. 3.39.

Рис. 3.39. Схема замещения цепи синусоидального тока
с параллельным соединением R ,L ,C -элементов

Полный ток в этой цепи определяется согласно закону Ома по формуле:

где G = 1/R – активная проводимость; B L = 1/X L – реактивная индуктивная проводимость; B C = 1/X C – реактивная емкостная проводимость; Y = 1/Z – полная проводимость цепи синусоидального тока с параллельным соединением R ,L ,C –элементов; ½B L − B C ½ = B – общая реактивная проводимость.

Из формулы (3.88) видно, что действующее значение тока в неразветвленной части цепи зависит от активной G и реактивной В проводимостей и от напряжения U сети, подведенного к зажимам цепи.

Режим работы цепи синусоидального тока с параллельно соединенными индуктивностью L и конденсатором C , при котором угол сдвига фаз j = y u − y i между напряжением U сети и током I в неразветвленной части цепи равен нулю называется резонансом токов.

Условием возникновения резонанса токов является равенство реактивной индуктивной проводимости B L и реактивной емкостной проводимости В С :

B L = B C .

Поскольку B L = 1/X L и B C = 1/X С , то при условии их равенства вытекает равенство индуктивного X L и емкостного X С сопротивлений:

Х L = Х C ,

которое также является условием возникновения резонанса токов в цепи с параллельным соединением L,C –элементов

Характерные особенности цепи синусоидального тока при резонансе токов.

1. Так как B L = B C , то при резонансе токов, как следует из (3.88) полная проводимость Y рез равна активной проводимости G и принимает минимальное значение:

= G. (3.89)

2. В то же время, полное сопротивление этой цепи при резонансе токов имеет максимальное значение, равное активному сопротивлению:

Z рез = 1/Y рез = 1/G = R . (3.90)

3. Так как Z рез = max, а Y рез =min, то при резонансе ток в неразветвленной части цепи, т.е. полный ток I имеет минимальное значение:

I рез = U /Z рез = Y рез U = GU . (3.91)

Это свойство позволяет обнаруживать резонанс токов в цепи синусоидального тока с параллельными L ,C -элементами при изменении частоты ω или параметров L и C .

4. Так как при резонансе B L = B C , I рез = GU , то действующее значение токов в ветвях с индуктивным и емкостным элементами (рис. 3.39), т.е. реактивные токи I L и I C , равны по модулю и могут превышать ток в неразветвленной части цепи в B L /G раз (если B L = B C > G ):

I L = I C ; (3.92)

I L = B L U = B L I рез /G , (3.93а)

I C = B C U = B C I рез /G . (3.93б)

При этом угол сдвига фаз между токами равен p = 180°, так как в индуктивном элементе ток отстает от напряжения по фазе на угол p/2 , а ток в емкостном элементе опережает напряжение на тот же угол.

Действующее значение тока I R в ветви с резистивным элементом R (рис. 3.39), т. е. активная составляющая тока при резонансе токов, равна току в неразветвленной части цепи:

I R = I а = I рез. (3.94)

Многократное усиление токов в параллельных ветвях с индуктивным L и емкостным С элементами при неизменном общем токе в неразветвленной части цепи является важной особенностью резонанса токов и широко используется в радиотехнических устройствах и установках автоматики.

5. Так как при резонансе токов угол сдвига фаз между напряжением и током в неразветвленной части цепи равен нулю (j = 0), то коэффициент мощности такой цепи равен единице:

cos j = I R /I = P /S = G /Y = R /Z = 1. (3.95)

Из выражения (3.41) следует, что полная мощность при резонансе токов равна активной мощности:

S = YU 2 = GU 2 = P . (3.96)

6. Так как при резонансе токов B L = B C , Q L = B L U 2 и Q C = B C U 2 , то

Q L = Q C , (3.97)

т.е. при резонансе токов реактивная индуктивная мощность равна реактивной емкостной мощности.

Это означает, что при резонансе токов, как и при резонансе напряжений (см. разд. 3.3), происходит обмен энергиями между энергией магнитного поля катушки индуктивности и энергией электрического поля конденсатора, но источник питания в этом обмене не участвует.

Полная реактивная мощность цепи при резонансе токов Q рез, равная разности реактивной индуктивной Q L и реактивной емкостной Q C мощностей, равна нулю:

Q рез = Q L – Q C = 0. (3.98)

Равенство нулю реактивной мощности Q рез рассматриваемой цепи вытекает также из равенства нулю угла сдвига фаз между напряжением и током (j=0) в неразветвленной части цепи:

Q рез = UIsin j = UIsin 0˚ = 0. (3.99)

При этом реактивная индуктивная Q L и реактивная емкостная Q C мощности могут, как и реактивные токи (см. п. 4), приобретать большие значения, оставаясь равными друг другу.

Резонанс токов находит широкое применение в промышленных электрических установках (асинхронных двигателях, сварочных установках и др.) для повышения их коэффициента мощности (cos j). Повышение коэффициента мощности индуктивных потребителей электрической энергии обеспечивается параллельным подключением к ним батареи конденсаторов емкостью С . В этом случае реактивная емкостная мощность конденсаторной батареи Q C уменьшает общую реактивную мощность установки Q , так как

Q Q L – Q C ½, (3.100)

и, тем самым, увеличивает коэффициент мощности cosj, что приводит к уменьшению тока в проводах, соединяющих потребитель с источником электрической энергии .

На рис. 3.40 построена векторная диаграмма токов и напряжения для режима резонанса токов схемы цепи рис. 3.39.

Рис. 3.40. Векторная диаграмма токов и напряжения для режима резонанса

токов при параллельном соединении R,L,C –элементов

При построении этой диаграммы необходимо учитывать характерные особенности режима резонанса токов: I = I a , j = 0, I L = I C , т.е. ток в неразветвленной части цепи при резонансе токов равен активной составляющей тока I = I P = I a и имеет минимальное значение. Угол сдвига фаз между напряжением и током равен нулю: j = 0.

Отсюда следует, что вектор тока совпадает по фазе с вектором напряжения .

Токи в параллельных ветвях с реактивными проводимостями B L и B C равны по модулю и противоположны по фазе:

½ ½=½- ½ (3.101)

и могут значительно превышать полный ток, т.е. ток в неразветвленной части цепи:

I L = I C >> I , если B L = B C >> G .

Вектор тока опережает вектор напряжения на угол p/2 а вектор тока отстает от вектора напряжения на угол p/2. Вектор полного тока находят путем геометрического сложения векторов , и . При резонансе вектор полного тока совпадает по фазе с вектором напряжения (рис. 3.40).

Простейшей электрической цепью, в которой может наблюдаться в лабораторных условиях резонанс токов является цепь с параллельным соединением катушки индуктивности L K и батареи конденсаторов емкостью С . Реальная катушка индуктивности обладает активным R K сопротивлением провода и индуктивным сопротивлением X L собственной индуктивности L . Поэтому рассматриваемую цепь синусоидального тока с двумя параллельными ветвями можно представить в виде схемы замещения, показанной на рис 3.41.

Рис. 3.41. Схема замещения с катушкой индуктивности

и конденсатором для исследования резонанса токов

Как было выше сказано, условием резонанса токов является равенство реактивных проводимостей ветвей цепи B L = B C . Реактивная индуктивная проводимость B L катушки индуктивности с параметрами – R K , X L и реактивная емкостная проводимость В С батареи конденсаторов определяются по формулам :

; (3.102)

. (3.103)

Приравнивая индуктивную и емкостную проводимости, условие резонанса токов можно записать в виде:

, или , (3.104)

где w = w рез – резонансная угловая частота.

Из этого выражения следует, что резонанс токов для цепи (рис. 3.41) можно получить, изменяя параметры R K , L , C и w . В данной работе резонанс токов получается путем изменения емкости С батареи конденсаторов при постоянстве других параметров цепи.

Векторная диаграмма напряжения и токов для режима резонанса токов схемы рис. 3.41 построена на рис. 3.42.

Рис. 3.42. Векторная диаграмма токов для цепи с катушкой индуктивности

и конденсатором в режиме резонанса токов

Так как при резонансе токов B L = B C , то реактивная составляющая тока ветви с катушкой индуктивности равна по модулю и противоположна по знаку реактивному емкостному току ветви с конденсатором:

I КР = -I C .

Поэтому полный реактивный ток цепи в рассматриваемом случае равен нулю:

I P = ½I КР -I C ½= 0. (3.105)

Ток в неразветвленной части цепи (рис. 3.41), т.е. полный ток в цепи при резонансе токов равен активной составляющей тока и совпадает с ней по фазе (рис. 3.42):

= , (3.106)

а вектор тока на векторной токов (рис. 3.42) совпадает по направлению с вектором входного напряжения.

Полная проводимость цепи синусоидального тока с параллельным соединением реальной катушки индуктивности и батареи конденсаторов (рис. 3.41) определяется по формуле:

Y = . (3.107)

Причем из (3.103) видно, что реактивная емкостная проводимость В С пропорциональна емкости С батареи конденсаторов.

Активная Р , реактивная Q и полная S мощности для цепи с параллельными ветвями определяются по формулам (3.108) − (3.110) и, с учетом особенностей схемы рис. 3.41, равны:

Р = Р К = UIcos j = UI Ка = R К = GU 2 , (3.108)

Q = UIsin j = UI КР = X = BU 2 , (3.109)

S = UI = YU 2 = . (3.110)

В режиме резонанса токов эти мощности будут равны:

Р рез = UI = UI Ка = R К = GU 2 , (3.111)

Q рез = 0, (3.112)

S рез = Р рез. (3.113)

Кривые, выражающие зависимость проводимостей, токов, мощностей и коэффициента мощности от емкости батареи конденсатора называются резонансными кривыми .

На рис. 3.43 приведены резонансные кривые (P , Q , S , I , cos j) = f (C ), построенные в общем виде при U = const и w = 2pf = const .

Анализ этих зависимостей показывает, что при увеличении емкости батареи конденсаторов С полная мощность S сначала уменьшается, достигает минимума в режиме резонанса и становится равной активной мощности Р , а затем снова возрастает с увеличением емкости, в пределе стремясь к бесконечности.

Активная мощность Р К, выделяемая на активном сопротивлении провода катушки индуктивности, не зависит от емкости конденсатора в другой ветви цепи и остается постоянной.

Реактивная мощность Q с увеличением емкости батареи конденсаторов снижается, становясь равной нулю в режиме резонанса, а затем возрастает.

Коэффициент мощности cos j изменяется с изменением емкости С в обратном порядке: сначала с увеличением емкости коэффициент мощности возрастает, достигая максимума равного единице в режиме резонанса, а затем уменьшается, в пределе стремясь к нулю.

Полная проводимость цепи Y (на рис. 3.43 не показана) , как и полная мощность S , сначала уменьшается, достигает минимума в режиме резонанса, а затем снова возрастает с увеличением емкости С , в пределе стремясь к бесконечности.

Ток в неразветвленной части цепи пропорционален полной проводимости
(I = YU ). Поэтому характер его изменения подобен характеру изменения полной проводимости Y : сначала с ростом емкости конденсаторов ток I уменьшается, а затем снова начинает увеличиваться.

Рис. 3.43. Резонансные кривые P, Q, S, I, cosj в зависимости от емкости С при

параллельном соединении катушки индуктивности и батареи конденсаторов

Таким образом, резонансные кривые позволяют установить минимальную полную и реактивную мощность, и наименьший ток в неразветвленной части цепи при максимуме коэффициента мощности, равном единице, когда в цепи с параллельным соединением катушки индуктивности и батареи конденсаторов возникает резонанс токов.

Однако повышение коэффициента мощности выше 0,95 обычно не предусматривается, так как это связано со значительным увеличением емкости батареи конденсаторов.

Лабораторная работа делится на четыре части:

1. Подготовительная часть.

2. Измерительная часть (проведение опытов и снятие показаний приборов).

3. Расчетная часть (определение расчетных величин по формулам).

4. Оформительская часть (построение векторных диаграмм).

Примечание

Электромонтажные работы по исследованию резонанса токов в цепи с параллельным соединением R,L,C -элементов на модернизированном лабораторном стенде ЭВ-4 не проводятся , в отличие от работ на старых стендах (см. в – Работа 3а, п.2. Электромонтажная часть).

1.Подготовительная часть

Подготовка к проведению лабораторной работы включает:

1. Изучение теоретической части настоящего пособия и литературы , относящихся к теме данной работы.

2. Предварительное оформление лабораторной работы в соответствии с существующими требованиями .

В результате предварительного оформления лабораторной работы №3б в рабочей тетради или журнале студентом должен быть заполнен титульный лист, в работе должны быть указаны название работы и ее цель, приведены основные сведения по работе, взятые из раздела выше и формулы, необходимые для вычисления расчетных величин, представлены принципиальные и эквивалентные схемы замещения, заготовлены таблицы, соответственно числу опытов в работе.

Кроме этого, должно быть оставлено свободное место для построения векторных диаграмм.

2. Измерительная часть

Необходимые измерения параметров цепи однофазного тока с параллельным соединением электроприемников и исследования резонанса токов проводятся с помощью принципиальной схемы рис. 3.44. Данная схема соответствует панели модернизированног стенда ЭВ-4 с аналогичной мнемосхемой и цифровыми (рис. 3.45)

Рис. 3.44. Принципиальная схема цепи синусоидального тока

с параллельным соединением катушки индуктивности

и батареи конденсаторов для исследования резонанса токов

1. Перед подачей питания к исследуемой цепи на панели стенда с мнемосхемой и цифровыми измерительными приборами (рис. 3.45) перевести все выключатели (S 1 ÷ S 5 , S" 1 , S" 2), в нижнее положение (состояние – «откл»).

2. Подключить лабораторный автотрансформатор (ЛАТР), установленный на горизонтальной панели блока питания (рис. 3.46) к сетевому напряжению (~220 В), нажав черные кнопки «вкл» выключателей. При этом загораются две сигнальные лампы «сеть». После этого нужнообязательноповернуть ручку регулятора ЛАТРАа против часовой стрелки до упора , тем самым, снизив напряжение на его выходе до нуля.

Рис. 3.45. Паналь стенда с цифровыми измерительными приборами и
мнемосхемой для лабораторой работы 3а «Однофазная цепь
с параллельно соединенными электроприемниками.

3. Отключить батарею конденсаторов С нажатием соответствующей черной кнопки выключателя справа от конденсаторов на панели №4 стенда с мнемосхемой рис. 3.47.

4. Подать регулируемое напряжение от ЛАТРа ко входу исследуемой цепи и подключить цифровые измерительные приборы, установив на панели стенда с мнемосхемой кнопки выключателей (S 1 ÷ S 6 , S" 1 ÷ S" 6) в положение «вкл» кроме выключателя S 3 (резистор R во всех опытах должен быть отключен). При этом должны засветиться зеленые цифры на электроизмерительных приборах.

5. Плавным поворотом по часовой стрелке ручки регулятора ЛАТРа (рис. 3.46) установить напряжение U на входе цепи порядка 50 ÷ 80 В, контролируя его цифровым вольтметром V (прибор ЩП02М, установленный слева на панели стенда – рис. 4.45). Следует поддерживать установленное напряжение постоянным во всех опытах с помощью ЛАТРа.

6. В процессе исследования цепи с параллельно соединенными катушкой индуктивности и батареей конденсаторов провести 7 опытов с различной емкостью батареи конденсаторов (величины емкостей для каждого опыта указаны в табл. 3.9) нажатием соответствующих кнопок выключателей на панели №4 стенда (рис. 3.47), постепенно увеличивая емкость с нуля до 120 мкФ. Перед подключением дополнительных конденсаторов в каждом опыте нужно обязательно отключить исследуемую цепь от источника питания (выхода ЛАТРа), переведя выключатели (S 1 , S" 1) в нижнее положение «откл», а перед проведением замеров вновь подключить к напряжению питания цепь с помощью тех же выключателей.

7. Во всех опытах измерить входное напряжение U , потребляемую активную мощность Р и протекающий по цепи ток I , соответственно цифровыми измерительными приборами: вольтметром V , ваттметром W и амперметром А (см. принципиальную схему на рис. 3.44 и панель стенда на рис. 3.45).

8. Напряжение на батарее конденсаторов U С и напряжение на катушке индуктивности U К с параметрами R K , L K измерить цифровыми вольтметрами, соответственно V C и V K , установленными на панели стенда (рис. 3.45).

9. Полученные результаты измерений каждого опыта занести в табл. 3.9.

10. В конце измерительной части данной работы нужно отключить исследуемую цепь от источника питания и сам блок питания от силового щитка с помощью выключателей S 1 и S 1 " на панели с мнемосхемой (рис. 3.46). Сообщить преподавателю об окончании измерений и приступить к вычислениям параметров цепи.

Рис. 3.46. Панель блока питания лабораторного стенда

Рис. 3.47. Панель №4 стенда с мнемосхемами батареи конденсаторов
и катушки индуктивности